418-00章节 模块通信网络

适用车型: 2003.50 嘉年华

内容	页码
说明与操作	
模块通信网络	418-00-2
诊断与测试	
模块通信网络	418-00-6
检查与确认	418-00-6
故障诊断表	418-00-6
定点测试	418-00-8
元件测试	418-00-53

说明与操作

模块通信网络

综述

模块通信网络是在不同的总线系统的基础上建立 起来的。

在总线系统里,几个模块通过一根或两根数据线相 连。

与传统电流控制方式不同,这些线缆能独立传输数据(控制命令信号)。

总线系统传输的是完整的数据包,而不仅是"开/关"肪冲信号。这些数据包不仅包含"开/关"脉冲信号,还包含一些关于数据包传输地址,数据包大小以及数据包监控信息。

所以在通信网络里,不同的模块使用同一种语言是 非常重要的。我们称这种语言为通信协议。

Ford生产的汽车有3种不同总线系统,每一种系统都有其自己的通信协议。

- ·标准的共同协议 (SCP)总线系统
- ·国际标准化组织 (ISO) 9141总线系统
- · 控制器区域网络 (CAN)总线系统

通信协议能使所有模块可以随时传递和接收信 息。

总线系统的优点:

- · 缩短传递线路
- · 在模块之间进行数据交换
- ·减少电子元件和插头,从而提高可靠性
- · 能更方便的进行故障诊断
- · 降低模块-线束成本

网络元件

嘉年华使用两种不同的总线系统进行模块数据通信,通过数据诊断接口(DLC)将模块和诊断工具连接起来

CAN 数据通信 总线系统由两根互相缠绕的电线组成。借助这两根线可以在模块之间和模块与诊断工具之间进行通信。如果这两根线中有一根断路或对地短路,或电源供应出现故障,模块与诊断工具之间的通信就不能进行。

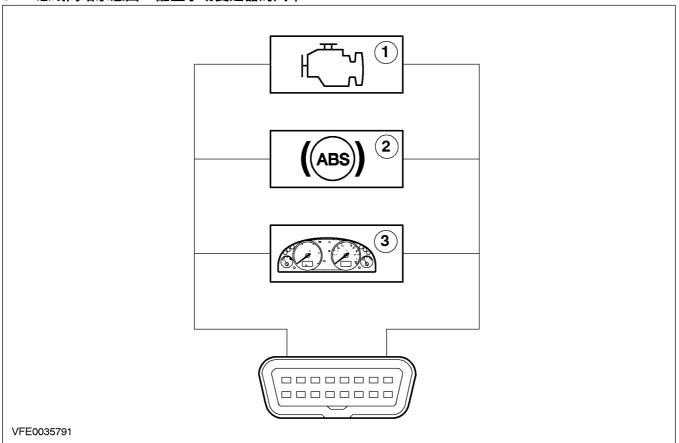
ISO 9141数据通信总线系统由一根线组成。如这根 线断路或短路,或电源供应出现故障,模块与诊断 工具之间的数据通信就不能进行。

数据诊断接口是一个标准的16针接头,将数据通信线(CAN 和 ISO 9141)、电源供应与诊断工具连接起来。

动力控制模块(PCM)控制与发动机管理有关和排放有关的所有功能。通过CAN数据总线系统与其它模块进行通信。DLC还有一个接口通过ISO 9141 总线系统读出模块的故障代码。

乘员保护控制模块(RCM)控制驾驶员和乘客安全气囊、侧气囊和爆炸式安全带张紧器。乘员保护控制模块通过ISO 9141 数据总线系统与DLC连接起来可以读出模块的故障代码。

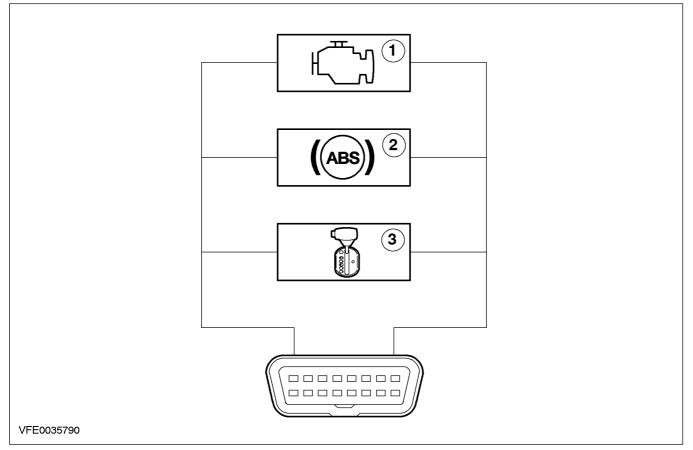
ABS模块控制防抱死制动系统,通过CAN 数据 总线系统与DLC连接起来可以读出模块中的故障代码。


防盗/中控锁模块控制关闭和警告系统,通过ISO 9141数据总线系统与DLC连接起来可以读出模块中的故障代码。

如汽车配置的是手动变速箱,仪表板(ICL)通过 CAN数据总线 系统与DLC连接起来。

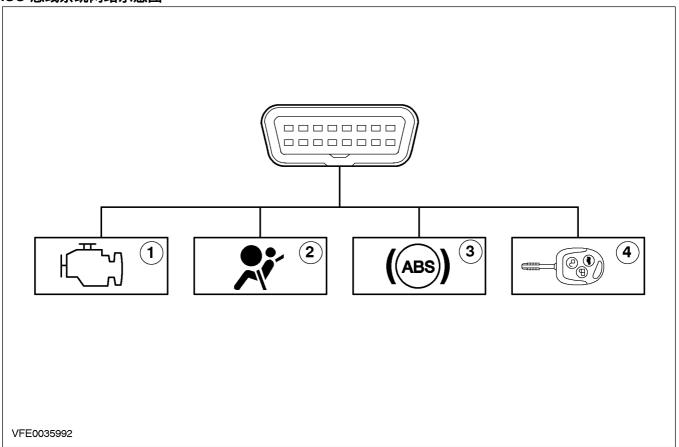
如汽车配置的是自动变速箱,自动变速箱模块通过 CAN数据总线系统与DLC连接起来。

说明与操作


CAN 总线网络示意图 – 配置手动变速器的汽车

编号	名称
1	动力控制模块(PCM)
2	防抱死制动模块(ABS)
3	仪表板(ICL)

说明与操作(续)


CAN 总线 系统网络示意图 – 配置自动变速器的汽车

编号	名称
1	动力控制模块(PCM)
2	防抱死制动模块(ABS)
3	自动变速器模块

说明与操作(续)

ISO 总线系统网络示意图



编号	名称
1	动力控制模块(PCM)
2	乘员保护控制模块(RCM)
3	防抱死制动模块(ABS)
4	防盗/中控锁模块

诊断与测试

模块通信网络

图示和接头信息请参阅线束诊断418-00节。

通用工具	
数字万用表	

目视检查表

	70.1—		
		电器	
•	保险		
•	线束		
•	接头		

- 如所观察或提出的问题的明显原因已经发现, 在进行下一步工作以前将它修复(如可能的话)。
- 4. 如故障不明显,使用WDS检查所有模块。如 WDS显示存在故障代码,将故障修复。测试并 运行系统是否正常。
- 5. 如没有故障代码显示,确认症状和参阅故障诊断表。
- 6. 测试或消除所有故障后,使用WDS检查汽车上 装备的所有模块,清除故障代码。汽车进行路 试。再一次检查所有模块。

检查和确认

- 1. 确定故障。
- 2. 目测有无电器或机械故障的明显迹象。

故障诊断表

现象	可能的故障源	措施
应	•保险 •线路 •安全气囊模块	• 转到定点测试 A
反应	•保险 •线路 •ABS 模块	• 转到定点测试 B
没有反应	•保险 •线路 •动力控制模块(PCM)	• 转到定点测试 C
•防盗/中控锁模块对诊断工具没有反应	•保险 •线路 •防盗/中控锁模块	• G转到定点测试 D
	●保险 ●线路	• 转到定点测试 E
	●保险 ●线路	• 转到定点测试 F

现象	可能的故障源	措施
	•线路 •防抱死制动(ABS)模块 •动力控制模块(PCM) •自动变速器模块—配置自动变速 器的汽车 •仪表板(ICL) – 配置手动变速器的 汽车	• 转到定点测试G

定点测试

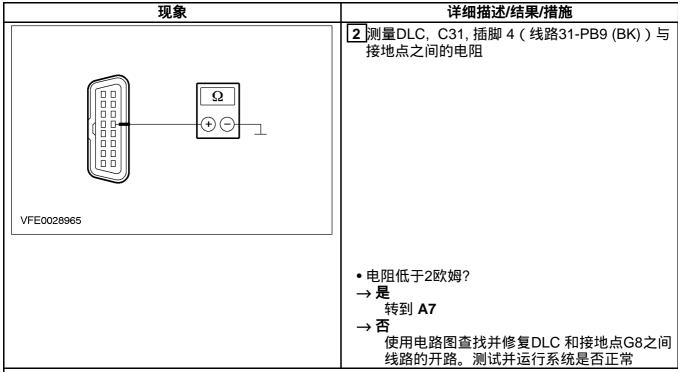
_定点测试A: 安全气囊模块对诊断工具没有反应

现象	详细描述/结果/措施	
⚠ 警告: 为尽可能地减少气囊的提前爆炸,在断开乘员保护系统的电器接头之前需断开蓄电池负极线, 然后再至少等待一分钟。不遵循以上说明有可能对人体造成伤害。		
⚠ 警告: 为尽可能地减少气囊的提前爆炸 ,对乘员保护系统进行操作时 ,请勿使用音响钥匙密码储存器。 不遵循以上说明 , 有可能对人体造成伤害。		
警告: 严禁使用探针对安全气囊模块的电器接头造成伤害。	或其它元件进行测试。不遵循以上说明有可能对人体	
A1: 确定故障现象		
	1 将点火开关转到 OFF 位置 2 接上诊断工具 3 选择动力控制模块(PCM)	
	・诊断工具能否和PCM建立通信?→ 是	
	转到 A10 → 否 转到 A2	
A2: 检查保险 F2		
	1 将点火开关转到 OFF 位置 2 检查保险 F2 (CJB)	
	保险完好?→ 是转到 A3→ 否	
	更换保险 F2 (10 A)。测试并运行系统是否正常。如保险再一次烧断,利用电路图查找并修复线路的对地短路	
A3: 检查保险 F2电源供应		
	1 接上保险 F2 (CJB) 2 测量保险F2 (10 A) 与接地点之间的电压	
	● 电压显示蓄电池电压? → 是 转到 A4	
	→ 否 使用电路图修复保险F2 电源供应。测试并运行系统是否正常	

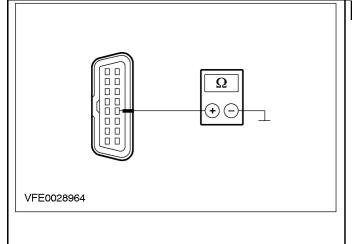
现象 详细描述/结果/措施 A4: 检查数据诊断接口(DLC)(插脚16)上的电压 |**1**||测量DLC C31,插脚16, (线路29-PB9(OG))与 接地点之间的电压 VFE0028957 • 电压显示为蓄电池电压? 转到 A5 →否 使用电路图查找并修复DLC与保险F2之间线 路的开路。测试并运行系统是否正常 A5: 检查DLC (插脚 9)上的电压 1 将点火开关转到ON位置 **2** 测量DLC, C31,插脚 9, (线路15-RA1 (GN/RD)) 与接地点之间的电压 VFE0028963

• 电压显示为蓄电池电压?

→是


转到 A6

→ 否 .


使用电路图查找并修复 DLC与点火开关之间的开路。测试并运行系统是否正常

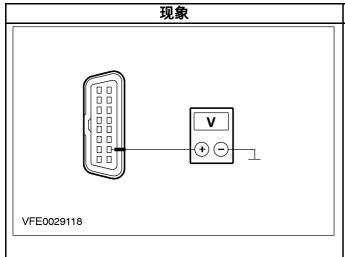
A6: 检查DLC (插脚 4)的接地情况

1 将点火开关转到OFF位置

A7: 检查DLC (插脚 5)的接地情况

1 测量DLC,C31, 插脚 5 (线路91-PC3 (BK/BU)) 与接地点之间的电阻

- 电阻低于 2 欧姆?
- →是


转到 A8

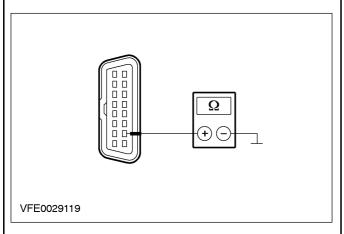
→否

使用电路图查找并修复 DLC和接地点G1之间 线路的开路。测试并运行系统是否正常

A8: 检查ISO 总线系统的电源短路

- 1 将点火开关转到OFF位置
- 2 断开蓄电池负极线
- 3 断开ABS模块 C420
- 4 断开PCM C43
- 5 断开安全气囊模块C334
- 6 断开防盗/中控锁模块C330
- 7 接上蓄电池负极线
- 8 将点火开关转到ON位置

详细描述/结果/措施


9 测量DLC, C31,插脚7(线路4-EE1(GY/RD))与接地点之间的电压

- 有电压显示?
- →是

根据电路图查找并修复线路到接头 S120 之间的电源短路。测试并运行系统是否正常。

→ 台 转到 A9

A9: 检查ISO总线系统对地短路

- 1 将点火开关转到OFF位置
- **2** 测量DLC, C31,插脚7 (线路4-EE1 (GY/RD))接地点之间的电阻

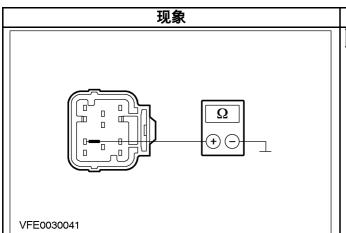
• 电阻高于 10,000 欧姆?

→是

根据电路图,查找并修复DLC与接点S120之间的线路4-EE1 (GY/RD)的开路。测试并运行系统是否正常

→否

根据电路图查找并修复线路的短路。测试并运行系统是否 正常


A10: CHECK FUSE F35

- 1 将点火开关转到OFF位置
- **2** 检查保险F35 (CJB)
- 保险完好?
- →是

转到 A11

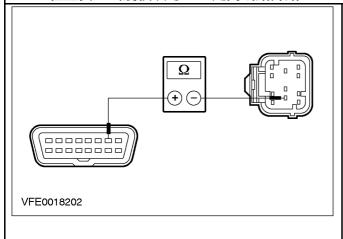
→否

现象	详细描述/结果/措施	
	更换保险 F35 (10 A)。测试并运行系统是否正常。如保险继续熔断,根据电路图查找并修复对地短路	
A11: 检查保险F35上的电压		
	 1 接上保险F35 (CJB) 2 将点火开关转到ON 位置 3 测量保险F35 (10 A)与接地点之间的电压 • 电压显示蓄电池电压? → 是 转到 A12 → 否 根据电路图修复保险 F35电源供应。测试并运行系统是否正常 	
A12: 检查安全气囊模块上的电压		
VFE0030040	1 将点火开关转到 OFF 位置 2 断开蓄电池负极线 3 断开安全气囊模块 C334 4 接上蓄电池负极线 5 将点火开关转到 ON位置 6 测量安全气囊模块接头 C334插脚8(线路94-JA10 (VT/OG))与接地点之间的电压	
	 电压显示蓄电池电压? → 是 转到 A13 → 否 根据电路图查找并修复安全气囊模块与保险 F35之间线路 94-JA10 (VT/OG)开路。测试并运行系统是否正常 	
A13: 检查安全气囊模块的接地情况		
	1 将点火开关转到OFF位置	

详细描述/结果/措施

②测量安全气囊模块接头 C334插脚9(线路 91-JA10 (BK/RD))与接地点之间的电阻

• 电阻低于2 欧姆?


→是

转到A14

→否

根据电路图查找并修复安全气囊模块与接地点G11之间线路91-JA10 (BK/RD)中的开路。测试并运行系统是否正常

A14: 检查安全气囊模块与DLC之间线路开路

1 测量安全气囊模块接头 C334插脚7 (线路 4-JA7 (GY/RD)) 与 DLC接头 C31插脚 7线路 (4-EE1 (GY/RD)) 之间的电阻

- 电阻低于2欧姆?
- →是

检查。如有必要更换安全气囊模块。测试并运 行系统是否正常

→ 召

根据电路图查找并修复安全气囊模块与接头 S120之间线路 4-JA7 (GY/RD)开路。测试并 运行系统是否正常

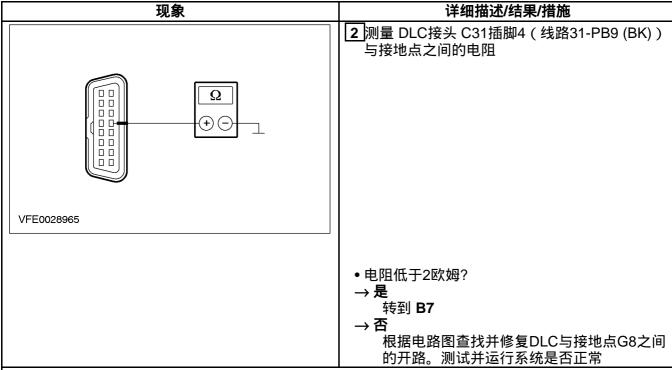
定点测试B: 检查防抱死制动(ABS)模块对诊断工具没有反应

现象	详细描述/结果/措施	
全型	乘员保护系统的电器接头之前需断开蓄电池负极线, E对人体造成伤害。	
全主要	或其它元件进行测试。不遵循以上说明有可能对人体	
B1: 确定故障现象		
	1 将点火开关转到 OFF位置 2 接上诊断工具 3 选择动力控制模块(PCM)	
	能否与 PCM建立通信?→ 是转到B10	
	→ 否 转到 B2	
B2: 检查保险F2		
	1 将点火开关转到OFF位置 2 检查保险 F2 (CJB)	
	● 保险完好? → 是 转到 B3 → 否	
	更换保险 F2 (10 A)。测试并运行系统是否正常。如保险再次熔断,根据电路图查找并修复对地短路	
B3: 检查保险 F2上的电压		
	1 接上保险F2 (CJB) 2 测量保险 F2 (10 A) 与接地点之间的电压	
	电压显示为蓄电池电压?→ 是转到 B4→ 否	
	根据电路图修复保险 F2的电源供应。测试并 运行系统是否正常	

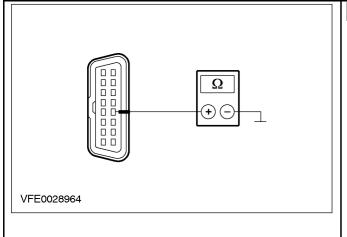
现象 详细描述/结果/措施 B4: 检查数据诊断接口(DLC) (插脚 16)上的电压 1 测量DLC接头 C31插脚16 (线路29-PB9 (OG)) 与接地点之间的电压 VFE0028957 • 电压显示为蓄电池电压? →是 转到B5 →否 根据电路图查找并修复DLC和保险 F2之间线 路开路。测试并运行系统是否正常 B5: 检查DLC (插脚 9)上的电压 1 将点火开关转到ON位置 **2** 测量DLC接头 C31插脚9(线路15-RA1 (GN/RD)) 与接地点之间的电压 VFE0028963

• 电压显示为蓄电池电压?

→是


转到 B6

→否


根据电路图查找并修复DLC与点火开关之间 的开路。测试并运行系统是否正常

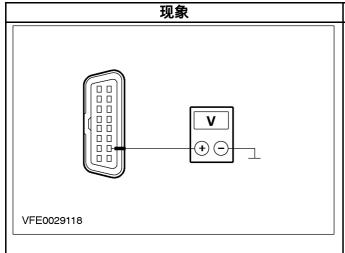
B6: 检查DLC (插脚 4)上的接地情况

1 将点火开关转到 OFF位置

B7: 检查DLC (插脚 5)上的接地情况

1 测量 DLC接头 C31插脚5 (线路91-PC3 (BK/BU)) 与接地点之间的电阻

- 电阻低于2欧姆?
- → 是


转到 B8

→否

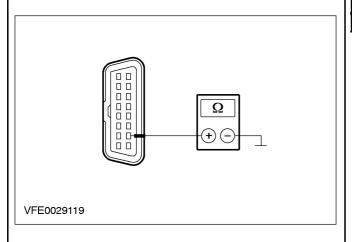
根据电路图查找并修复DLC与接地点G1之间的开路。测试并运行系统是否正常

B8: 检查ISO 总线系统的电源短路情况

- 1 将点火开关转到OFF位置
- 2 断开蓄电池负极线
- 3 断开安全气囊模块C334
- 4 断开动力控制模块(PCM) C43
- 5 断开防盗/中控锁模块 C330
- 6 断开 ABS模块 C420
- 7 接上蓄电池负极
- 8 将点火开关转到 ON位置

详细描述/结果/措施

9测量DLC接头C31插脚7 (线路4-EE1 (GY/RD),) 与接地点之间的电压


• 电压显示为蓄电池电压?

→是

根据电路图查找并修复线路到接头S120D的 电源短路。测试并运行系统是否正常

→ 台 转到 B9

B9: 检查ISO 总线系统对地短路

- 1 将点火开关转到OFF位置
- **2** 测量DLC接头 C31插脚7(线路4-EE1 (GY/RD),) 与接地点之间的电阻

• 电阻高于10,000 欧姆?

→是

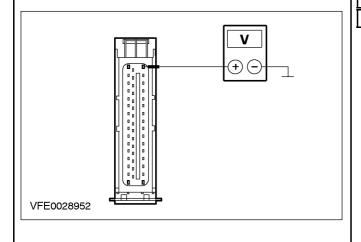
根据电路图查找并修复DLC与接头S120之间 4-EE1 (GY/RD)中的开路。测试并运行系统是 否正常

→否

根据电路图查找并修复线路到接头S120之间的对地短路。测试并运行系统是否正常

B10: 检查保险 F14

- 1 将点火开关转到 OFF位置
- **2** 检查保险 F14 (CJB)
- •保险完好?
- →是


转到 B11

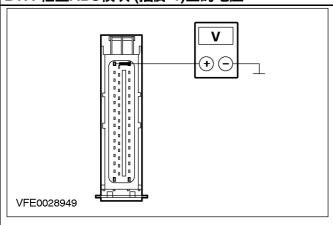
→否

现象	详细描述/结果/措施	
	更换保险F14 (20 A)。测试并运行系统是否正	
	常,如保险再次熔断,根据电路图查找并修复 对地短路	
B11: 检查保险 F14上电压		
	1 接上保险F14 (CJB)	
	2 测量保险F14 (20 A)与接地点之间电压	
	• 电压显示为蓄电池电压?	
	→ 是 转到 B12	
	→否	
	根据电路图修复保险F14的电源供应。测试并 运行系统是否正常	
B12: 检查保险 F25		
	1 检查保险F25 (CJB)	
	• 保险完好?	
	→ 是	
	转到 B13 → 否	
	更换保险 F25 (30 A)。测试并运行系统是否正	
	常,如保险再次熔断,根据电路图查找并修复 对地短路	
B13: 检查保险F25上的电压		
	1 接上保险 F25 (CJB)	
	2 测量保险F25 (30 A)与接地点之间的电压	
	• 电压显示蓄电池电压?	
	→ 是 转到 B14	
	→否	
	根据电路图修复保险F25电源供应。测试并运行系统是否正常	
B14: 检查保险F34		
	1 检查保险 F34 (CJB)	
	●保险完好?	
	→ 是	
	转到 B15 → 否	
	更换保险 F34 (3 A)。测试并运行系统是否正常。如保险再次熔断,查找并修复对地短路.	
B15: 检查保险F34上的电压		
	1 接上保险 F34 (CJB)	
	2 将点火开关转到ON 位置	
	[3]测量保险F34与接地点之间的电压	
	• 电压显示为蓄电池电压?	
	→ 是 转到 B16	
	→否	

现象	详细描述/结果/措施
	根据电路图修复保险F34上的电源供应。测试 并运行系统是否正常

B16: 检查ABS模块(插脚32)上的电源供应

- 1 将点火开关转到OFF位置
- **2** 断开 ABS 模块 C42
- ③ 测量ABS 模块接头 C420插脚 32(线路29-CF6 (OG/YE))与接地点之间的电压


- 电压显示为蓄电池电压?
- →是

转到 B17

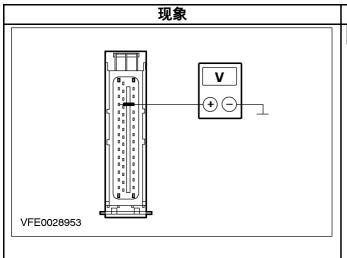
→否

根据电路图查找并修复ABS模块与保险F14 之间线路 29-CF6 (OG/YE)开路。测试并运行 系统是否正常

B17: 检查ABS模块 (插脚 1)上的电压

| 1 | 测量ABS模块接头 C420插脚 1 (线路 29-CF13 (OG/BU)) 与接地点之间的电压

- 电压显示为蓄电池电压?
- →是


转到 B18

→否

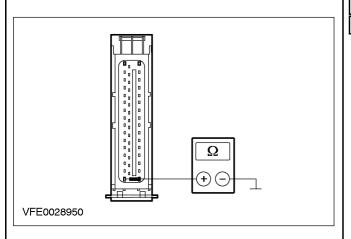
根据电路图查找并修复ABS模块与保险F25 之间线路的开路。测试并运行系统是否正常

B18: 检查ABS模块 (插脚 4)上的电压

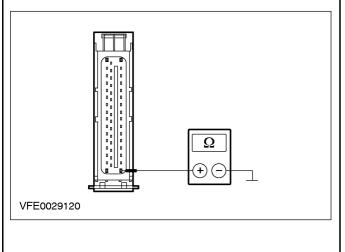
1 将点火开关转到ON 位置

详细描述/结果/措施

2 测量ABS模块接头C420插脚4 (线路 15-CF6 (GN/YE)与接地点之间的电压


- 电压显示为蓄电池电压?
- →是

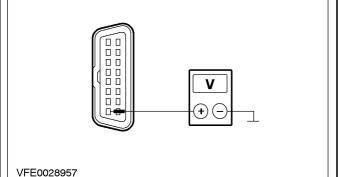
转到 B19


→否

根据电路图查找并修复ABS模块与保险F34 之间线路15-CF6 (GN/YE) 中的开路。测试并 运行系统是否正常

B19: 检查ABS模块的接地情况

- 1 将点火开关转到OFF位置
- **2** 根据电路图查找并修复ABS模块接头C420插脚 16(线路31-CF6(BK)与接地点之间线路的电 阳


3 根据电路图查找并修复ABS模块接头C420插脚 17(线路31-CF13(BK)与接地点之间线路的电阻

- 电阻都低于2欧姆?
- →是

现象	详细描述/结果/措施
DOO. 松木ADO供地上DI C之间处映开映	转到 B20 → 否 根据电路图查找并修复ABS模块与接地点之间开路。测试并运行系统是否正常
B20: 检查ABS模块与DLC之间线路开路	
ΥFE0033753	1 测量ABS模块接头C420插脚2(线路4-EE6 (GY))与DLC接头 C31插脚7之间的电阻
	● 电阻低于2欧姆? → 是 检查。如有必要更换ABS模块。测试并运行系 统是否正常
	→ 否 根据电路图查找并修复ABS模块与接头S120 之间 4-EE6 (GY)的开路。测试并运行系统是 否正常

定点测试 C: 动力控制模块(PCM)对诊断工具没有反应

详细描述/结果/措施 现象 **个** 警告: 为尽可能地减少气囊的提前爆炸,在断开乘员保护系统的电器接头之前需断开蓄电池负极线 然后再至少等待一分钟。不遵循以上说明有可能对人体造成伤害。 警告: 为尽可能地减少气囊的提前爆炸 ,对乘员保护系统进行操作时 ,请勿使用音响钥匙密码存储器。 不遵循以上说明,有可能对人体造成伤害。 全 警告: 严禁使用探针对安全气囊模块的电器接头或其它元件进行测试。不遵循以上说明有可能对人体 造成伤害。 C1: 检查保险 F2 1 将点火开关转到 OFF位置 **2** 检查保险 F2 (CJB) • 保险完好? →是 转到 C2 →否 更换保险 F2 (10 A)。测试并运行系统是否正 常。如保险再次熔断,根据电路图查找并修复 对地短路 C2: 检查保险F2的电压 1 接上保险 F2 (CJB) **| 2 |**测量保险F2 (10 A)与接地点之间的电压 • 电压显示为蓄电池电压? →是 转到 C3 →否 根据电路图修复保险F2 上的电源供应。测试 并运行系统是否正常 C3: 检查DLC (插脚16)上的电压 1 测量DLC接头 C31插脚16 (线路29-PB9 (OG)) 与接地点之间的电压

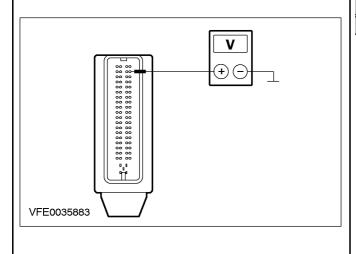
- 电压显示为蓄电池电压?
- →是

转到 C4

→否

根据电路图查找并修复DLC与保险 F2之间的 开路。测试并运行系统是否正常

现象 详细描述/结果/措施 C4: 检查DLC (插脚 9)上的电压 1 将点火开关转到ON位置 2 测量DLC接头C31插脚 9 (线路15-RA1 (GN/RD),) 与接地点之间的电压 VFE0028963 • 电压显示为蓄电池电压? →是 转到C5 →否 根据电路图查找并修复DLC与点火开关之间 的开路。测试并运行系统是否正常

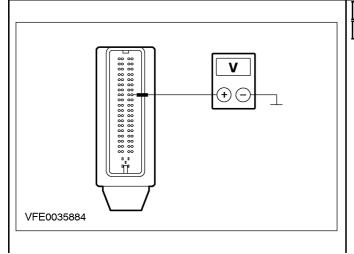

C5: 检查DLC (插脚 4)的接地情况

现象 详细描述/结果/措施 C6: 检查DLC (插脚 5)的接地情况 |**1** |测量DLC接头C31插脚5(线路 91-PC3 (BK/BU)) 与接地点之间的电阻 Ω (+)(-)VFE0028964 • 电阻低于2欧姆? →是 转到 C7 →否 根据电路图查找并修复DLC与接地点G1之间 的开路。测试并运行系统是否正常 C7: 检查保险F4 1 检查保险 F4 (CJB) • 保险完好? →是 转到 C8 →否 更换保险 F4 (10 A)。测试并运行系统是否正 常,如保险再次熔断,根据电路图查找并修复 对地短路情况 C8: 检查保险F4的电压 1 接上保险 F4 (CJB) | **2 |**测量保险F4 (10 A)与接地点之间的电压 • 电压显示为蓄电池电压? →是 转到 C9 →否 根据电路图查找并修复保险F4的电源供应。测 试并运行系统是否正常 C9: 检查保险F20 1 检查保险 F20 (CJB) • 保险完好? →是 转到 C10 →否 更换保险。测试并运行系统是否正常。如保险 再次熔断,根据电路图查找并修复对地短路

现象 详细描述/结果/措施 C10: 检查保险 F20上的电压 1 接上保险 F20 (CJB) 2 将点火开关转到 ON位置 3 测量保险F20 (15 A)与接地点之间的电压 • 电压显示为蓄电池电压? →是 转到 C11 →否 根据电路图查找并修复保险F20的电压供应。 测试并运行系统是否正常

C11: 检查PCM (插脚7)上的电压

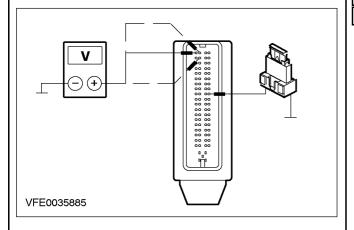
- 1 将点火开关转到 OFF位置
- **2** 断开 PCM C43
- | **3**||测量PCM接头 C43插脚7(线路29-PC28 (OG/YE)) 与接地点之间的电压


- 电压显示为蓄电池电压?
- →是

转到 C12

→否

根据电路图查找并修复PCM与保险F4之间线 路29-PC28 (OG/YE)的开路。测试并运行系统 是否正常


C12: 检查PCM (插脚13)上的电压

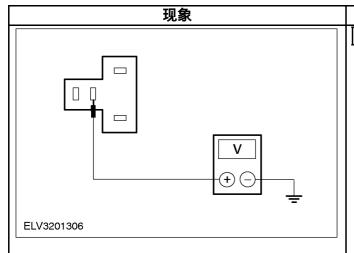
- 1 将点火开关转到 ON 位置
- **2** 测量PCM接头 C43插脚13 (线路14-PC28 (VT/YE)) 与接地点之间的电压

现象	详细描述/结果/措施
	 ●电压显示为蓄电池电压? → 是 转到 C13 → 否 根据电路图查找并修复PCM与保险F20之间 线路1429-PC28 (VT/YE)的开路。测试并运行 系统是否正常

C13: 检查 PCM 上的电压

- 1 将点火开关转到 OFF位置
- |**2|**在 PCM线束侧接头C43插脚14线路 31S-PD14(BK/YE)与接地点之间接入带有保险 的跨接线(1A)。

- 3 测量PCM接头 C43插脚44线路14S-PC28 (VT/YE)与接地点之间的电压
- **4** 测量PCM接头 C43插脚43线路14S-PC28A (VT/YE)与接地点之间的电压
- **[5]**测量PCM接头 C43插脚44线路14S-PC28 B(VT/YE)与接地点之间的电压
 - 电压显示为蓄电池电压?
 - → **是**


转到 C19 → 否

有一个测量值没有显示蓄电池电压: 根据电路图查找并修复PCM与与接点S15之间线路的开路。测试并运行系统是否正常

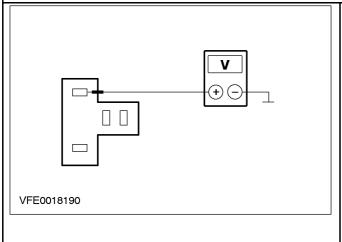
所有测量值都没有显示蓄电池电压: 转到 C14

C14: 检查电源保持继电器(插脚 5)上的电压

- 1 将点火开关转到OFF位置
- 2 断开电源保持继电器C7

详细描述/结果/措施

3 测量电源保持继电器插座 C7插脚5线路 29-PD15 (OG/BU)与接地点之间的电压


- 电压显示为蓄电池电压?
- →是

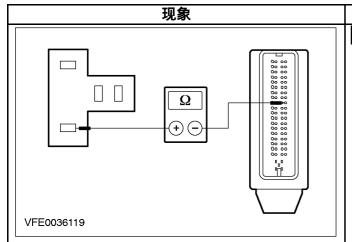
转到C15

→否

根据电路图查找并修复电源保持继电器与保险F4之间线路29-PD15 (OG/BU)的开路。测试并运行系统是否正常

C15: 检查电源保持继电器 (插脚 2)上的电压

1 测量电源保持继电器插座 C7插脚2线路 29-PD14 (OG/YE)与接地点之间的电压


- 电压显示为蓄电池电压?
- →是

转到 C16

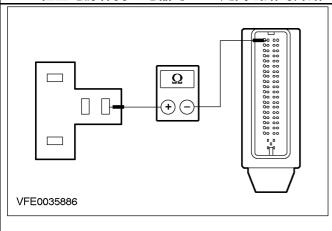
→否

根据电路图查找并修复电源保持继电器插脚2与插脚5之间线路29-PD14 (OG/BU)的开路。 测试并运行系统是否正常

C16: 检查电源保持继电器与PCM之间线路开路

详细描述/结果/措施

1 根据电路图查找并修复电源保持继电器插座C7插脚1线路31S-PD14 (BK/YE)与PCM接头C43插脚14线路31S-PD14 (BK/YE)之间的开路。测试并运行系统是否正常


- 电阻低于2欧姆?
- →是

转到 C17

→否

根据电路图查找并修复电源保持继电器与 PCM之间线路31S-PD14 (BK/YE)开路。测试 并运行系统是否正常

C17: 检查电源保持继电器与PCM之间线路的开路

1 根据电路图查找并修复电源保持继电器插座C7 插脚3线路14S-PC2 (VT/BU)与PCM接头C43插脚44线路14S-PC28 (VT/YED1)之间的电阻。测试并运行系统是否正常

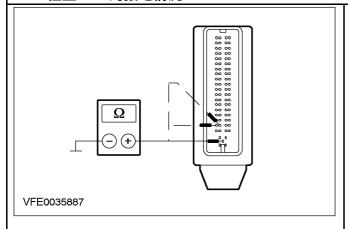
- 电阻低于 2欧姆?
- →是

转到 C18

→否

根据电路图查找并修复电源保持继电器与接 头S15之间线路14S-PC2 (VT/BU)的开路。测 试并运行系统是否正常

C18: 检查电源保持继电器

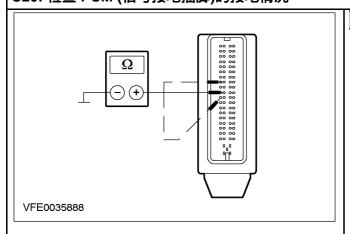

- 1 电源保持继电器的检查请参阅本节的元件测试
 - 电源保持继电器完好?
 - → 是

检查。如有必要更换PCM。测试并运行系统是 否正常

→否

现象	详细描述/结果/措施
	更换电源保持继电器。测试并运行系统是否正 常

C19: 检查PCM的接地情况


- 2 测量PCM接头 C43插脚61线路31-PC28A (BK)与接地点之间的电阻
- 3 测量PCM接头 C43插脚80线路31-PC28B (BK)与接地点之间的电阻
 - 电阻都低于 2欧姆?
 - →是

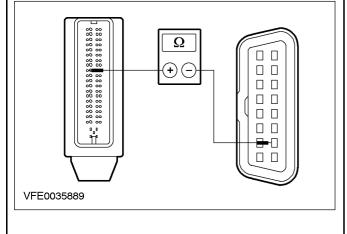
转到 C20

→否

根据电路图查找并修复PCM与接头S70之间的电路开路。测试并运行系统是否正常

C20: 检查 PCM (信号接地插脚)的接地情况

1 测量PCM 接头C43插脚 51线路91-PC28 (BK/YE)与接地点之间的电阻


- 2 测量PCM 接头C43插脚 53线路 91-PC28A(BK/YE)与接地点之间的电阻
- 3 测量PCM 接头C43插脚73线路 91-PC28C(BK/YE)与接地点之间的电阻
 - 电阻都低于 2欧姆?
 - →是

转到 C21

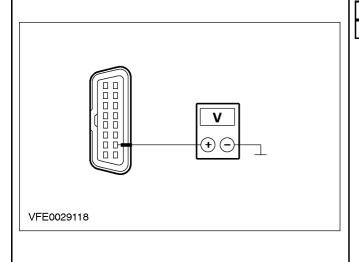
→否

现象 详细描述/结果/措施 根据电路图查找并修复PCM与接头S17之间的电路开路。测试并运行系统是否正常

C21: 检查PCM与DLC之间线路开路

1 测量PCM 接头C43插脚 71线路4-EE14 (GY/VT),与DLC接头C31插脚7之间的电阻

- 电阻低于2?
- →是

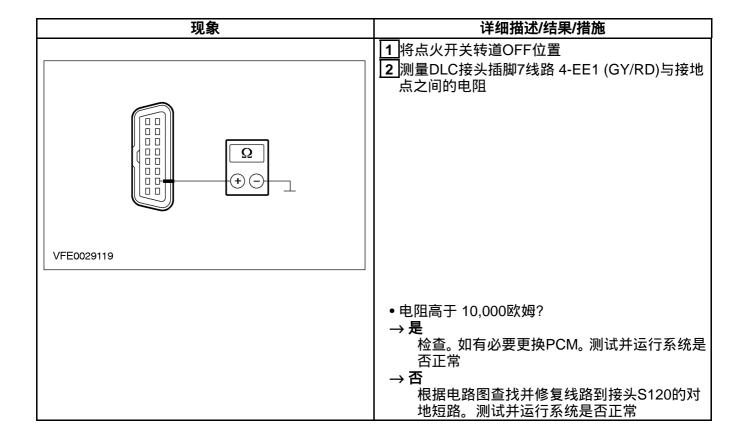

转到C22

→否

根据电路图查找并修复PCM与DLC之间线路 开路。测试并运行系统是否正常

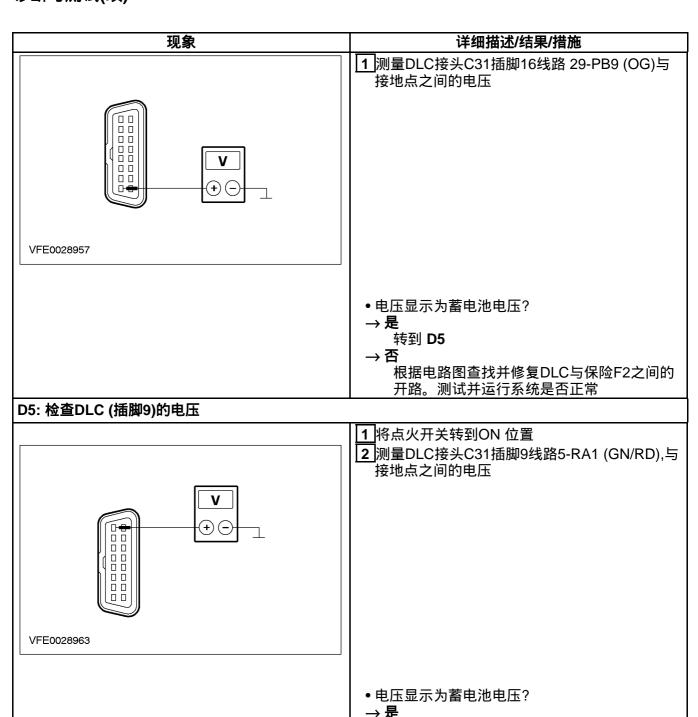
C22: 检查ISO 总线系统电源短路

- 1 断开蓄电池负极线
- 2 断开安全气囊模块C334
- **3** 断开ABS模块C420
- 4 断开防盗/中控锁模块C330
- 5 接上蓄电池负极线
- 6 将点火开关转到ON位置
- |**7**||测量DLC接头C31线路 4-EE1 (GY/RD)与接地点 之间的电压


- 电压显示为蓄电池电压?
- →是

根据电路图查找并修复线路到S120线路的电源短路。测试并运行系统是否正常

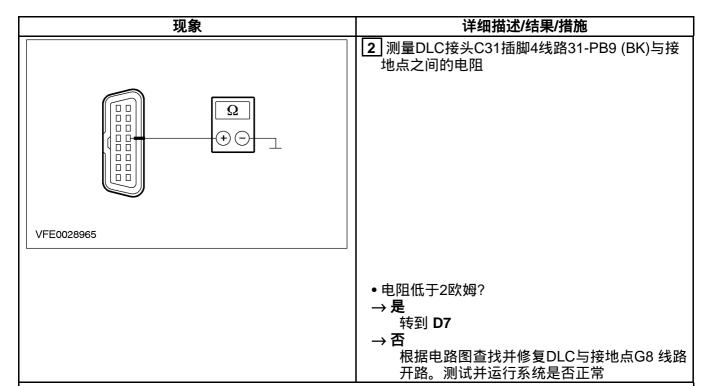
→否


转到C23

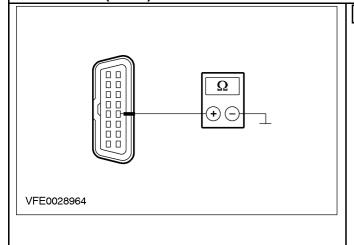
C23: 检查ISO 总线 系统对地短路

定点测试D: 防盗/中控锁对诊断工具没有反应

现象	详细描述/结果/措施	
全性		
全 警告: 为尽可能地减少气囊的提前爆炸 ,对乘员保护系统进行操作时 ,请勿使用音响钥匙密码存储器。不遵循以上说明 , 有可能对人体造成伤害。		
全 警告: 严禁使用探针对安全气囊模块的电器接头或其它元件进行测试。不遵循以上说明有可能对人体 造成伤害。		
D1: 检查故障现象		
	1 将点火开关转到OFF位置	
	2 接上诊断工具	
	3 选择动力控制模块(PCM)	
	能和PCM建立通信吗?→ 是	
	→ 定	
	→否	
	转到 D2	
D2: 检查保险 F2		
	1 将点火开关转到OFF位置	
	2 检查保险F2 (CJB)	
	● 保险完好? → 是	
	→ 定 转到 D3 → 否	
	→ 百 更换保险F2 (10 A),测试并运行系统是否正 常。如保险再次熔断,查找并修复对地短路	
D3: 检查保险F2上的电压		
	1 接上保险F2 (CJB) 2 测量保险F2 (10 A)与接地点之间的电压	
	• 电压显示为蓄电池电压?	
	→ 是 转到 D4	
	→ 否 根据电路图修复保险F2的电源供应。测试并运 行系统是否 正常	
D4: 检查DLC(插脚16)上的电压		


转到D6

→否


根据电路图查找并修复DLC与点火开关之间 的线路开路。测试并运行系统是否正常

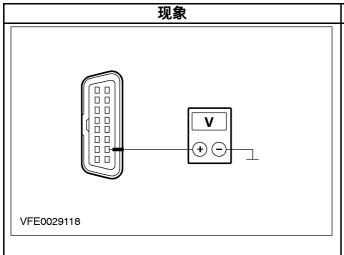
D6: 检查DLC (插脚 4)的接地情况

1 将点火开关转到OFF位置

D7: 检查DLC (插脚5)的接地情况

1测量DLC接头C31接头5线路 91-PC3 (BK/BU)与接地点之间的电阻

- 电阻低于 2欧姆?
- →是


转到 D8

→否

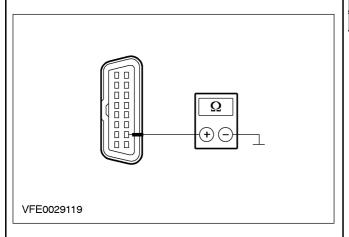
根据电路图查找并修复DLC和接地点G1之间的线路开路。测试并运行系统是否正常

D8: 检查ISO 总线系统电源对地短路

- 1 断开蓄电池负极线
- 2 断开安全气囊模块 C334
- 3 断开ABS模块C420
- **4** 断开PCM C43
- 5 断开防盗/中控锁模块 C331
- 6 接上蓄电池负极线
- 7 将点火开关转到ON位置

详细描述/结果/措施

8 测量DLC接头 C31插脚7线路 4-EE1 (GY/RD)与接地点之间的电压


• 电压显示为蓄电池电压?

→是

根据电路图查找并修复线路到接头S74之间 的对电源短路。测试并运行系统是否正常

→ 省 转到 D9

D9: 检查 ISO 总线 系统对地短路

- 1 将点火开关转到 OFF位置
- **2**测量DLC接头C31插脚7线路4-EE1 (GY/RD),与接地点之间的电阻

• 电阻高于10,000 欧姆?

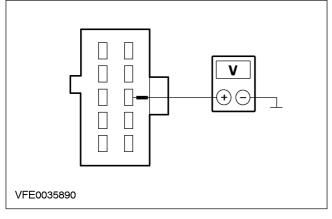
→是

根据电路图查找并修复DLC和接头S120之间的4-EE1 (GY/RD)的开路。测试并运行系统是否正常

→否

根据电路图查找并修复线路到接头S120的对地短路。测试并运行系统是否 正常

D10: 检查保险 F23

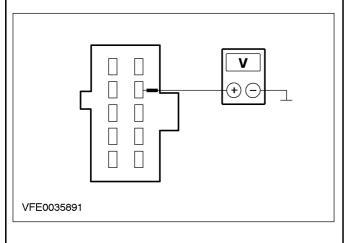

- 1 将点火开关转到 OFF位置
- **2** 检查保险F23 (CJB)
- 保险完好?
- →是

转到 D11

→否

现象	详细描述/结果/措施
	更换保险F23 (20 A)。测试并运行系统是否正常。如保险再次熔断,根据电路图查找并修复线路的对地短路
D11: 检查保险F23上的电压	
	1 接上保险F23 (CJB) 2 测量保险F23 (20 A) 与接地点之间的电压
	电压显示为蓄电池 电压?→ 是
	转到 D12 → 否
	根据电路图F23修复保险上电源供应。测试并 运行系统是否正常
D12: 检查保险E F19	
	1 检查保险F19 (CJB)
	● 保险完好? → 是
	~~ 转到 D13 ~ → 否
	更换保险 F19 (7.5 A)。测试并运行系统是否正常。如保险再次熔断,根据电路图查找并修复线路 的对地短路
D13: 检查保险 F19上的电压	
	1 接上保险F19 (CJB) 2 将点火开关转到ACCESSORY位置 3 测量保险F19 (7.5 A)与接地点之间的电压
	电压显示为蓄电池电压? → 是 转到 D14
	→ 否 根据电路图修复保险 F19电源供应。测试并运行系统是否正常
D14: 检查保险F36	
	1 将点火开关转到 OFF位置 2 检查保险F36 (CJB)
	• 保险完好? → 是
	→ 否 更换保险F36 (7.5 A)。测试并运行是否正常,如保险再次熔断,根据电路图查找并修复线路的对地短路
D15: 检查保险 F36上的电压	
	1 接上保险F36 (CJB) 2 将点火开关转到ON位置 3 测量保险F36 (7.5 A)与接地点之间的电压
	— ● 电压显示为蓄电池电压? —)是

现象 详细描述/结果/措施 转到 D16 →否 根据电路图修复保险 F36上的电源供应。测试并运行系统是否 正常 D16: 检查防盗/中控锁模块 (插脚3) 上的电压 1 将点火开关转到 OFF位置 2 断开防盗/中控锁模块 C331 3 测量防盗/中控锁模块 接头C331插脚3线路29-AA17 (OG/WH)与接地点之间的电压


- 电压显示为蓄电池?
- →是

转到 D17

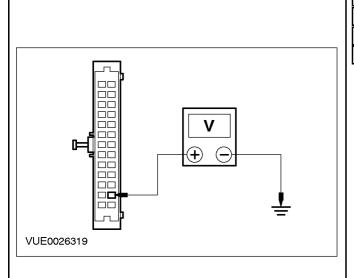
→否

根据电路图查找并修复防盗/中控锁模块与保险F23之间线路 29-AA17 (OG/WH) 的开路。测试并运行系统是否正常

D17: 检查防盗/中控锁模块(插脚2)上的电压

- 1 将点火开关转到 ON 位置
- 2 测量防盗/中控锁模块接头C331插脚 2线路 14-AA17 (VT/WH)与接地点之间的电压

• 电压显示为蓄电池电压?


→是

转到 D18

→否

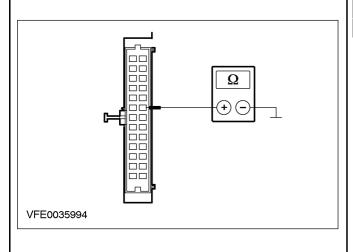
根据电路图查找并修复防盗/中控锁模块与保险F36之间线路14-AA17 (VT/WH) 开路。测试并运行系统是否正常

D18: 检查防盗/中控锁模块(插脚15)上的电压

现象

详细描述/结果/措施

- 1 将点火开关转到OFF位置
- 2 断开防盗/中控锁模块C330
- 3 将点火开关转到 ACCESSORY位置
- **4** 测量防盗/中控锁模块接头C330插脚15线路 74-AA17 (BU/OG)与接地点之间的电压


- 电压显示为蓄电池电压?
- →是

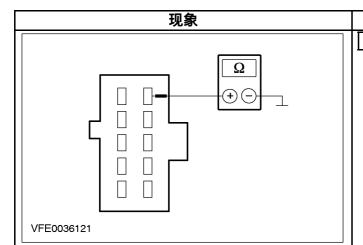
转到 D19

→否

根据电路图查找并修复防盗/中控锁模块与保险F19之间线路的开路。测试并运行系统是否正常

D19: 检查防盗/中控锁模块9(插脚21)与接地情况

- 1 将点火开关转到OFF位置
- **2** 测量防盗/中控锁模块接头C330插脚21线路 31-MB21 (BK)与接地点之间的电阻


- 电阻低于 2 欧姆?
- →是

转到 D20

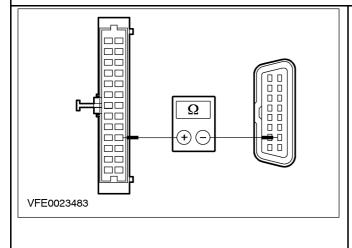
→否

根据电路图查找并修复防盗/中控锁模块与接头之间线路31-MB21 (BK) 的开路。测试并运行系统是否正常

D20: 检查防盗/中控锁模块(插脚1)的接地情况

详细描述/结果/措施

1 测量防盗/中控锁模块接头C331插脚1线路91-AA17 (BK/WH)与接地点之间的电阻


- 电阻低于2欧姆?
- →是

转到 D21

→否

根据电路图查找并修复防盗/中控锁与接头G5 之间的线路91-AA17 (BK/WH)开路。测试并运 行系统是否正常

D21: 检查防盗/中控锁模块与DLC之间线路的开路

1 测量防盗/中控锁模块接头C330插脚17线路 4-MB13 (GY)与DLC接头C31插脚7之间的电阻

- 电阻低于 2欧姆?
- →是

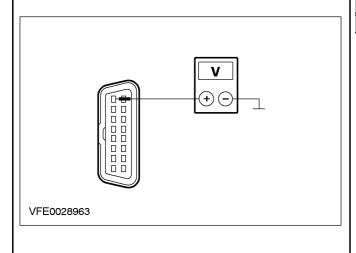
检查。如有必要更换防盗/中控锁模块。测试 并运行系统是否正常

→否

根据电路图查找并修复防盗/中控锁模块与接头S120之间线路4-MB13 (GY)的开路。测试并运行系统是否正常

定点测试E: 仪表板对诊断工具没有反应 - 配置手动变速器的汽车

定点测试E: 仪表板对诊断工具没有反应 – 配置手动变速器的汽车	
现象	详细描述/结果/措施
E1: 检查故障现象	
	1 将点火开关转到 OFF位置 2 接上诊断工具 3 选选择动力控制模块(PCM)
	能和 PCM建立通信?→ 是转到 E7
	│ → 否 │ 转到 E2
E2: 检查保险 F2	1,25
	1 将点火开关转到OFF位置 2 检查保险F2 (CJB)
	保险完好?→ 是转到 E3
	→ 否 更换保险 F2 (10 A)。测试并运行系统是否正常。如保险再次熔断,根据电路图查找并修复线路的对地短路
E3: 检查保险 F2上的电压	
	1 接上保险 F2 (CJB) 2 测量保险F2 (10 A) 与接地点之间的电压 • 电压显示为蓄电池电压?
	→ 是 转到 E4 → 否
	根据电路图查找并修复保险F2电源供应。测试 并运行系统是否正常
E4: 检查DLC (插脚 16)上的电压	7121337024410
	1 测量DLC接头C31插脚16线路29-PB9 (OG)与接地点之间的电压
V	
VFE0028957	


• 电压显示为蓄电池电压?

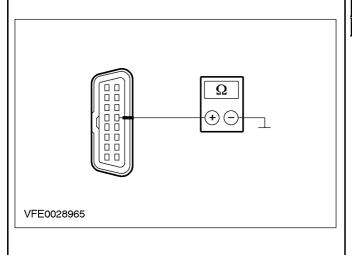
. 转到 E5

→否

现象	详细描述/结果/措施
	根据电路图查找并修复DLC 与保险 F2之间的 开路。测试并运行系统是否正常

E5: 检查DLC (插脚 9)上的电压

- 1 将点火开关转到ON位置
- **2** 测量DLC接头C31插脚9线路15-RA1 (GN/RD), 与接地点之间的电压


- 电压显示为蓄电池电压?
- →是

转到 E6

→否

根据电路图查找并修复DLC与点火开关之间 的开路。测试并运行系统是否正常

E6: 检查DLC接地情况

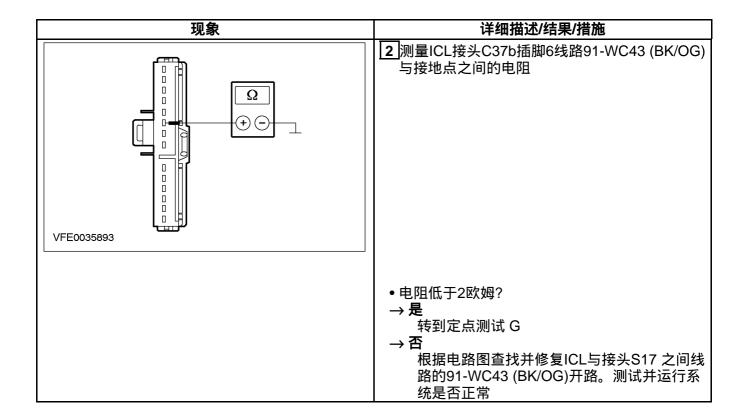
- 1 将点火开关转到 OFF位置
- **2** 测量DLC接头 C31插脚 4线路31-PB9 (BK),与接地点之间的电阻

• 电阻低于2欧姆?

→ 是

根据电路图查找并修复DLC插脚 5与接地点 G1 之间的开路。测试并运行系统是否正常

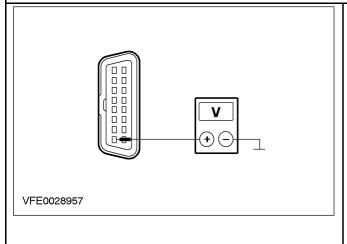
→否


根据电路图查找并修复DLC与接地点G8 之间的开路。测试并运行系统是否正常

E7: 检查保险 F13

- 1 将点火开关转到OFF位置
- **2** 检查保险F13 (CJB)

现象	详细描述/结果/措施	
	 保险完好? →是 转到 E8 →否 更换保险F13 (15 A)。测试并运行系统是否正常。如保险再次熔断,根据电路图查找并修复线路的对地短路 	
E8: 检查保险F13上的电压值		
	1 接上保险F13 (CJB) 2 将点火开关转到 ON 位置 3 测量保险 F13 (15 A)与接地点之间的电压 • 电压显示为蓄电池电压? →是 转到 E9 →否 根据电路图查找并修复保险F13的电源供应。 测试并运行系统是否正常。	
 E9: 检查ICL上的电压	州山开运门永坑走口正市。	
VFE0035892	1 将点火开关转到 OFF位置 2 断开 ICL C37b 3 将点火开关转到ON位置 4 测量ICL接头C37b插脚13线路14-WC43 (VT),与接地点之间的电压	
	 ●电压显示为蓄电池电压? → 是 转到E10 → 否 根据电路图查找并修复DLC与保险F14之间的开路。测试并运行系统是否正常 	
E10: 检查 ICL接地情况		

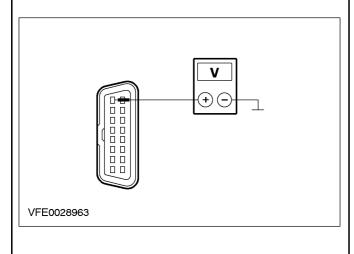

1 将点火开关转到OFF位置

定点测试F: 自动变速器模块对诊断工具没有反应 - 配置自动变速器的汽车

详细描述/结果/措施 现象 F1: 检查故障现象 1 将点火开关转到OFF位置 2 接上诊断工具 3 选择PCM • 能否与PCM建立通信? →是 转到 F7 →否 转到 F2 F2: 检查保险 F2 1 将点火开关转到OFF位置 **2** 检查保险 F2 (CJB) • 保险完好? →是 转到 F3 →否 更换保险F2 (10 A),测试并运行系统是否正 常。如保险再次熔断,根据电路图查找并修复 线路的对地短路 F3: 检查保险F2上的电压 1 接上保险F2 (CJB) |**2**||测量保险F2 (10 A) 与接地点之间的电压 • 电压显示为蓄电池电压? →是 转到 F4 →否 根据电路图修复保险F2上的电源供应。测试并 运行系统是否正常.

F4: 检查DLC (插脚 16)上的电压

1 测量DLC接头 C31插脚16线路29-PB9 (OG),与接地点之间的电压


- 电压显示为蓄电池电压?
- **→** 是

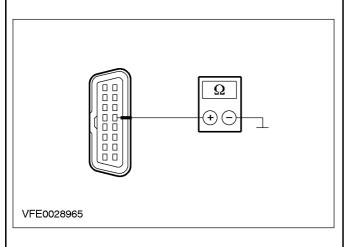
转到 F5

→否

现象	详细描述/结果/措施
	根据电路图查找并修复DLC与保险F2 之间线 路的开路。测试并运行系统是否正常

F5: 检查 DLC (插脚 9)上的电压

- 1 将点火开关转到ON位置
- **2** 测量DLC接头 C31插脚9线路15-RA1 (GN/RD), 与接地点之间的电压


- 电压显示为蓄电池电压?
- →是

转到 F6

→否

根据电路图查找并修复DLC与接头点火开关 之间线路的开路。测试并运行系统是否正常

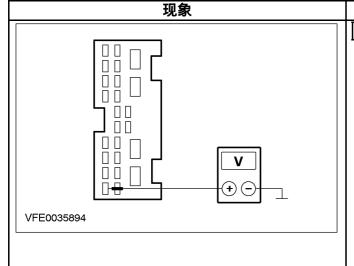
F6: 检查DLC的接地情况

- 1 将点火开关转到OFF位置
- **2** 测量DLC接头C31插脚4线路31-PB9 (BK),与接地点之间电阻

• 电阻低于2欧姆?

→ 是

根据电路图查找并修复DLC插脚5与接地点 G1 之间线路的开路。测试并运行系统是否正 常


→否

根据电路图查找并修复DLC与接地点G8 之间 线路的开路。测试并运行系统是否正常

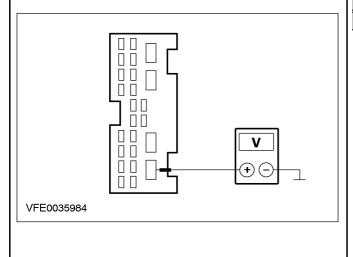
F7:检查保险 F28

- 1 将点火开关转到 OFF位置
- **2**检查保险F28 (CJB)

现象	详细描述/结果/措施	
	 保险完好? →是 转到 F8 →否 更换保险F28 (5 A)。测试并运行系统是否正常,如保险再次熔断,根据电路图查找并修复线路对地短路 	
F8: 检查保险F28上的电压		
	1 接上保险F28 (CJB) 2 测量保险F28 (5 A)与接地点 之间电压 • 电压显示为蓄电池电压? → 是 转到 F9 → 否 根据电路图修复保险F28上的电源供应。测试并运行系统是否正常	
F9: 检查保险 F29		
	1 检查保险 F29 (CJB) • 保险完好? → 是 转到 F10 → 否 更换保险F29 (15 A)。测试并运行系统是否正常,如保险再次熔断,根据电路图查找并修复线路对地短路	
F10: 检查保险F29上的电压		
	1 接上保险 F29 (CJB) 2 将点火开关转到ON 位置 3 测量保险F29 (15 A) 与接地点之间的电压 • 电压显示为蓄电池电压? → 是 转到 F11 → 否 根据电路图查找并修复保险F29上的电源供	
F11: 检查自动变速器(插脚24)上的电压	应。测试并运行系统是否正常	
1 11. 1至百岁又处所(1日网24)上的论体	1 关闭点火开关 2 断开自动变速器模块 C430	

详细描述/结果/措施

③ 测量自动变速器模块C430插脚24线路29-TA55 (OG/BK)与接地点之间的电压


- 电压显示为蓄电池电压?
- →是

转到 F12

→否

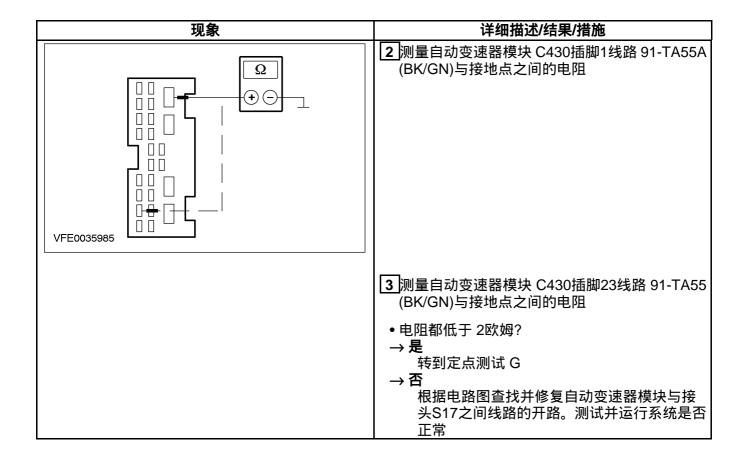
根据电路图查找并修复自动变速器模块与保险F28之间线路29-TA55 (OG/BK)的开路。测试并运行系统是否正常

F12: 检查自动变速器 (插脚6) 上的电压

- 1 将点火开关转到ON位置
- **2**测量自动变速器模块 C430插脚6线路14-TA55 (VT/BU)接地点 之间的电压

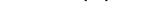
• 电压显示为蓄电池电压?

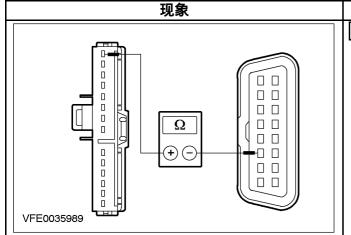
→是


转到 F13

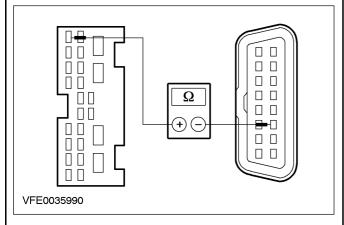
→ 禋

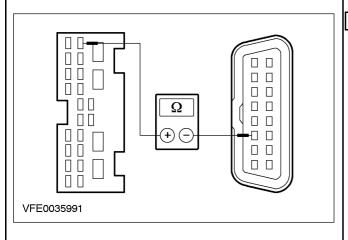
根据电路图查找并修复自动变速器模块与保险F29之间线路的开路。测试并运行系统是否正常


F13: 检查自动变速器模块的接地情况


1 将点火开关转到OFF位置

定点测试G: 不能进行模块/网络通信(CAN 总线系统)

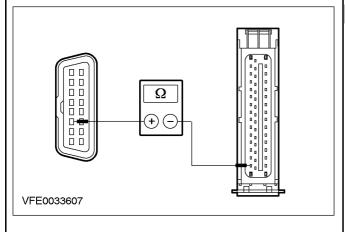

详细描述/结果/措施 G1: 检查CAN 总线系统开路 1 关闭点火开关 2 断开仪表板(ICL) C37b - 配置手动变速器的汽车 3 断开防抱死制动系统(ABS)模块 C420 4 断开自动变速器模块C430 – 配置自动变速器的 汽车 5 断开动力控制模块(PCM) C43 6 测量PCM接头C43插脚62线路4-EC7 (GY/RD) 与 DLC接头C31插脚6 线路 4-EC13 (GY/VT)之 00 间的电阻 Ω (+)(-) \Box VFE0035986 与 DLC接头C31插脚14 线路 5-EC13 (BU/WH) 00 之间的电阻 Ω (+)(-)'n VFF0035987 8 配置手动变速器的汽车:测量ICL接头C37b插脚 2线路 4-EC8 (GY/VT与DLC接头C31插脚6线路 4-EC13 (GY/VT)之间的电阻 ō Ω --П VFE0035988



详细描述/结果/措施


9 配置手动变速器的汽车 : 测量ICL接头C37b插脚1线路5-EC8 (BU/WH)与DLC接头C31插脚14线路5-EC13 (BU/WH)之间的电阻

10配置自动变速器的汽车:测量自动变速器模块接 头C430插脚17线路4-EC16 (GY/WH)与DLC接 头C31插脚6线路4-EC13 (GY/VT)之间的电阻

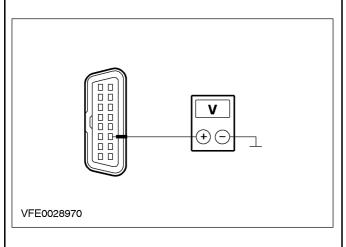


11配置自动变速器的汽车:测量自动变速器模块接 头C430插脚7线路5-EC16 (BU/OG)与DLC接头 C31插脚14线路5-EC13 (BU/WH)之间的电阻

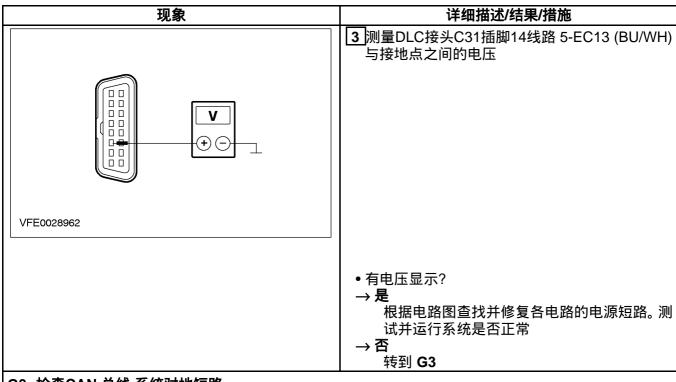
详细描述/结果/措施

12 测量ABS 模块接头C420插脚11线路 4-EC9 (GY)与DLC接头C31插脚6,线路4-EC13 (GY/VT)之间的电阻

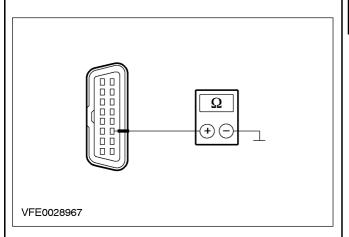
13 测量ABS 模块接头C420插脚5线路 5-EC9 (BU)与DLC接头C31插脚14,线路5-EC13 (BU/WH)之间的电阻

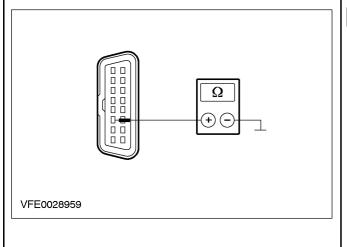

- 电阻都低于2欧姆?
- →是

转到 G2


→否

根据电路图查找并修复各模块与DLC之间的 开路。测试并运行系统是否正常

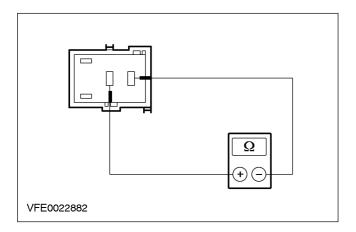

G2: 检查CAN 总线 系统电源短路


- 1 将点火开关转到 ON 位置
- **2** 测量DLC接头C31插脚6线路 4-EC13 (GY/VT)与接地点之间的电压

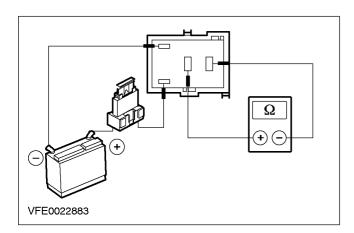
G3: 检查CAN 总线 系统对地短路

- 1 将点火开关转到OFF 位置
- ②测量DLC接头C31插脚6线路 4-EC13 (GY/VT)与接地点之间的电阻

3 测量DLC接头C31插脚14线路5-EC13 (BU/WH) 与接地点之间的电阻


- 电阻都高于10,000欧姆?
- →是

现象	详细描述/结果/措施
	检查。如有必要更换有故障的模块。测试并运 行系统是否正常
	→ 台 根据电路图查找并修复各线路的对地短路。测试并运行系统是否正常


元件测试

电源保持继电器

- 1. 检查常开触点:
 - 1.测量继电器插脚3和5之间的电阻
 - 电阻高于10.000欧姆?
 - 是: 转到 2.
 - 否: 更换电源保持继电器

- 2. 检查常闭触点:
 - 1.用跨接线(5 A)将蓄电池正极与继电器插脚1 连接起来
 - 2.用跨接线将蓄电池负极与继电器插脚2连接起来。
 - 3.测量继电器插脚3与5之间的电阻,
 - 电阻都低于2欧姆?
 - 是: 电源保持继电器完好。
 - 否: 更换电源保持继电器

