DTC P3009/526 HIGH VOLTAGE POWER SHORT CIRCUIT

DTC |P3009/611| HIGH VOLTAGE POWER SHORT CIRCUIT

DTC |P3009/612| HIGH VOLTAGE POWER SHORT CIRCUIT

DTC |P3009/613| HIGH VOLTAGE POWER SHORT CIRCUIT

DTC P3009/614 HIGH VOLTAGE POWER SHORT CIRCUIT

CIRCUIT DESCRIPTION

DTC No.	INF Code	DTC Detection Condition	Trouble Area
P3009	526 * ¹	Insulation resistance of high voltage circuit and body is low	 Frame wire System main relay System main resistor HV battery assembly w/ motor compressor assembly Battery ECU HV transaxle assembly w/ converter inverter assembly Main battery cable Main battery cable No. 2 Battery plug Frame wire No. 2 Junction block assembly
P3009	611 * ²	Insulation resistance of A/C compressor motor or A/C inverter is low	w/ motor compressor assemblyw/ converter inverter assembly
P3009	612 * ²	Insulation resistance of HV battery, battery ECU, system main relay, or system main resistor is low	 HV battery assembly Battery ECU System main relay System main resistor Main battery cable Main battery cable No. 2 Battery plug Frame wire No. 2 Junction block assembly
P3009	613 * ²	Insulation resistance of HV transaxle or motor and generator inverters is low	HV transaxle assembly w/ converter inverter assembly
P3009	614 * ²	Insulation resistance of motor and generator invert- ers, A/C inverter, system main relay, system main resistor, or frame wire is low	 Frame wire System main relay System main resistor HV battery assembly w/ converter inverter assembly Main battery cable Main battery cable No. 2 Battery plug Frame wire No. 2 Junction block assembly

HINT:

*1: Stored simultaneously when DTC P3009 is set.

*2: Stored when a malfunction area has been identified.

WIRING DIAGRAM

INSPECTION PROCEDURE

CAUTION:

- Before inspecting the high-voltage system, take safety precautions to prevent electrical shocks, such as wearing insulated gloves and removing the service plug grip. After removing the service plug grip, put it in your pocket to prevent other technicians from reconnecting it while you are servicing the high-voltage system.
- After disconnecting the service plug grip, wait at least for 5 minutes before touching any of the high–voltage connectors or terminals.

HINT:

At least 5 minutes is required to discharge the high-voltage condenser inside the inverter.

1 READ OUTPUT DTC(HV ECU)

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the hand-held tester ON.
- (d) On the hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / HV ECU / DTC INFO / TROUBLE CODES.
- (e) Read DTCs.

Result:

Display (DTC Output)	Proceed to
DTC P3009	A
DTCs P3009 and P0A1D (HV control ECU malfunction)	В
DTCs P3009 and P0A1F (Battery ECU malfunction)	С
DTCs P3009 and P0A78 or P0A7A (Inverter system malfunction)	D

A

2 READ OUTPUT INF CODE

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the hand-held tester ON.
- (d) On the hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / HV ECU / DTC INFO / TROUBLE CODES.
- (e) Display the freeze frame data for DTC P3009 and check its information (INF) code. **Result:**

Display (INF Code Output)	Proceed to
Only 526 (Insulation resistance of high voltage circuit and body is low)	A
526 and 611 (Insulation resistance of A/C area is low)	В
526 and 612 (Insulation resistance of HV battery area is low)	С
526 and 613 (Insulation resistance of transaxle area is low)	D
526 and 614 (Insulation resistance of high voltage direct current area is low)	E

DIAGNOSTICS - HYBRID CONTROL SYSTEM

Α

3 CHECK W/MOTOR COMPRESSOR ASSY

CAUTION:

Wear insulated gloves before performing the following operation.

(a) Turn the power switch OFF.

(See page 55–34)

(b) Remove the service plug grip (see page 21–116).

NOTICE:

Turning the power switch ON (READY) with the service plug grip removed could cause malfunction. Therefore, never turn the power switch ON (READY) in this state.

- (c) Disconnect the C4 w/ motor compressor connector.
- (d) Using a megohmmeter, check the insulation resistance between the high–voltage terminals of the w/ motor compressor connector and the body ground.
 Standard:

Tester Connection	Specified Condition
C4–1 – Body ground	$3.0 \text{ M}\Omega$ or higher
C4–2 – Body ground	$3.0 \text{ M}\Omega \text{ or higher}$
C4–3 – Body ground	3.0 M Ω or higher

REPLACE W/MOTOR COMPRESSOR ASSY

NG \

CHECK INSULATION RESISTANCE(INVERTER, TRANSAXLE AND FRAME WIRE)

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- Check that the w/ motor compressor connector has been (b) disconnected.
- (c) Using a megohmmeter, check the insulation resistance between the high-voltage terminals of the A/C inverter connector and the body ground.

Standard:

Tester Connection	Specified Condition
C4–1 – Body ground	2.0 $M\Omega$ or higher
C4–2 – Body ground	2.0 $M\Omega$ or higher
C4–3 – Body ground	2.0 M Ω or higher
NG So to step 15	

ΟΚ

5 **CHECK HV BATTERY AREA**

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Turn the power switch OFF.
- Check that the service plug grip has been detached. If (b) not, remove the service plug grip (see page 21-116).

NOTICE:

Turning the power switch ON (READY) with the service plug grip removed could cause malfunction. Therefore, never turn the power switch ON (READY) in this state.

4

- (c) Disconnect the B12 and B13 battery ECU connectors.
- (d) Disconnect the main battery cables from the system main relays.
- (e) Using a megohmmeter, check the insulation resistance between the positive terminal on the HV battery side of the system main relay and the body ground. **Standard: 10 M** Ω **or higher**
- (f) Using a megohmmeter, check the insulation resistance between the negative terminal on the HV battery side of the system main relay and the body ground. **Standard: 10 M** Ω **or higher**

NG > Go to step 6

OK

OK

REPLACE BATTERY ECU ASSY (See page 21–98)

6 CHECK SYSTEM MAIN RELAYS FOR STICKING

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- (b) Disconnect all the high–voltage terminals of the system main relays.
- (c) Check the resistance at the switch side of the system main relays.

Standard: Below 1 Ω

NG GO TO STEP 4 AFTER REPLACE STUCK SYSTEM MAIN RELAY

RELAY

WITH

7 CHECK SYSTEM MAIN RELAYS FOR INSULATION

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- Check that all the high-voltage terminals of the system (b) main relays have been disconnected.
- Using a megohmmeter, check the insulation resistance (C) between the high-voltage terminals of the system main relays and the body ground.

Standard: 10 M Ω or higher

NG REPLACE SYSTEM MAIN **REDUCED INSULATION RESISTANCE**

OK

8

CHECK SYSTEM MAIN RESISTOR FOR INSULATION

CAUTION:

Wear insulated gloves before performing the following operation.

- Check that the service plug grip has been detached. (a)
- (b) Check that both terminals of the system main resistor have been disconnected.
- Using a megohmmeter, check the insulation resistance (C) between the high-voltage terminal of the system main resistor and the body ground.

Standard: 10 M Ω or higher

NG

REPLACE SYSTEM MAIN RESISTOR

9 INSPECT MAIN BATTERY CABLE

CAUTION:

Wear insulated gloves and goggles before performing the following operation.

- (a) Remove the HV battery assembly (see page 21–54).
- (b) Remove the battery cover (see page 21–54).
- (c) Check if the main battery cable cover is not damaged or internal electrical leads are not in contact with the battery case or body.

OK: Electrical leads are not in contact with the battery case or body

- (d) Remove the terminal (A in the illustration) on the battery module side of the main battery cable only.
- (e) Using a megohmmeter, check the insulation resistance between each terminal of the main battery cable and shield ground.

Standard: 10 M Ω or higher

NG > REPLACE MAIN BATTERY CABLE

OK

10 INSPECT MAIN BATTERY CABLE NO.2

CAUTION:

fo (a) (b) (c) (c)

Wear insulated gloves and goggles before performing the following operation.

(a) Following the previous step, check if the main battery cable No. 2 cover is not damaged or internal electrical leads are not in contact with the battery case or body.

OK: Electrical leads are not in contact with the battery case or body

- (b) Remove the terminal (A in illustration) on the battery module side of the main battery cable No. 2 only.
- (c) Using a megohmmeter, check the insulation resistance between each terminal of the main battery cable No. 2 and shield ground.

Standard: 10 M Ω or higher

NG > REPLACE MAIN BATTERY CABLE NO.2

ΟΚ

11 INSPECT BATTERY PLUG

CAUTION:

Wear insulated gloves and goggles before performing the following operation.

(a) Following the previous step, disconnect only the connecting terminal of the battery plug.

NOTICE:

Do not reinstall the service plug grip.

(b) Using a megohmmeter, check the insulation resistance between each terminal of the battery plug wire harness and body ground.

Standard: 10 M Ω or higher

NG > REPLACE BATTERY PLUG

12 **INSPECT FRAME WIRE NO.2**

CAUTION:

Wear insulated gloves and goggles before performing the following operation.

(a) Following the previous step, check if the frame wire No.
 2 cover is not damaged or internal electrical leads are not in contact with the battery case or body.

OK: Electrical leads are not in contact with the battery case or body.

- (b) Remove all the terminals on the battery module side of the frame wire No. 2.
- (c) Using a megohmmeter, check the insulation resistance between each terminal of the frame wire No. 2 connector and the battery case.

Standard: 10 M Ω or higher

NG > REPLACE FRAME WIRE NO.2

13 INSPECT JUNCTION BLOCK ASSY

CAUTION:

Wear insulated gloves and goggles before performing the following operation.

- (a) Following the previous step, remove the junction block assembly.
- (b) Visually check the junction block assembly for any damage.

OK: No crack or damage

NG > REPLACE JUNCTION BLOCK ASSY

OK

14 INSPECT HV BATTERY ASSY

ELETER ELETER ELETER

CAUTION:

A90472

Wear insulated gloves and goggles before performing the following operation.

(a) Following the previous step, check the insulation resistance between each terminal (either the positive and negative side) of each battery module of the HV battery assembly and the battery case using a megohmmeter. Standard: Some of the battery modules have continuity of below 10 M Ω

OK

REPLACE HV SUPPLY BATTERY ASSY (See page 21–54)

15 CHECK SYSTEM MAIN RELAYS FOR STICKING

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- (b) Disconnect all the high–voltage terminals of the system main relays.
- (c) Check the resistance at the switch side of the system main relays.

Standard: Below 1 Ω

16 CHECK FRAME WIRE FOR INSULATION

A87664

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- (b) Disconnect the frame wire from the inverter.
- (c) Using a megohmmeter, check the insulation resistance between the high–voltage terminals of the frame wire and the body ground.

Standard: 10 M Ω or higher

Hybrid Vehicle Motor:

١Λ

114

17 CHECK HV TRANSAXLE ASSY FOR INSULATION

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- (b) Remove the inverter cover (see page 21–23).
- (c) Disconnect the three–phase alternating current cables for the motor and generator from the inverter.
- Using a megohmmeter, check the insulation resistance between the six terminals of the three-phase alternating current cables on the transaxle side and the body ground. Standard:

Tester Connection	Specified Condition
U (I14–1) – Body ground	10 M Ω or higher
V (I14–2) – Body ground	10 M Ω or higher
W (I14–3) – Body ground	10 M Ω or higher
U (I15–1) – Body ground	10 M Ω or higher
V (I15–2) – Body ground	10 M Ω or higher
W (I15–3) – Body ground	10 M Ω or higher

U

REPLACE HYBRID VEHICLE TRANSAXLE ASSY (See page 22–11)

OK

REPLACE W/CONVERTER INVERTER ASSY (See page 21-23)

A92045

18 CHECK A/C AREA FOR INSULATION

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Turn the power switch OFF.
- (b) Remove the service plug grip (see page 21–116).

NOTICE:

Turning the power switch ON (READY) with the service plug grip removed could cause malfunction. Therefore, never turn the power switch ON (READY) in this state.

- (c) Disconnect the C4 w/ motor compressor connector.
- (d) Using a megohmmeter, check the insulation resistance between the high–voltage terminals of the w/ motor compressor connector and the body ground.

Standard:

Tester Connection	Specified Condition
C4–1 – Body ground	3.0 M Ω or more
C4–2 – Body ground	$3.0 \text{ M}\Omega \text{ or more}$
C4–3 – Body ground	3.0 M Ω or more

NG REPLACE W/MOTOR COMPRESSOR ASSY (See page 55–34)

OK

19 CHECK INVERTER FOR INSULATION

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- (b) Check that the w/ motor compressor connector has been disconnected.
- (c) Using a megohmmeter, check the insulation resistance between the high–voltage terminals of the A/C inverter connector and the body ground.

Standard:

Tester Connection	Specified Condition
C4–1 – Body ground	2.0 M Ω or more
C4–2 – Body ground	2.0 M Ω or more
C4–3 – Body ground	2.0 $M\Omega$ or more

NG REPLACE W/CONVERTER INVERTER ASSY (See page 21–23)

```
OK
```

REPLACE W/MOTOR COMPRESSOR ASSY (See page 55-34)

20 CHECK HV TRANSAXLE AREA FOR INSULATION

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Turn the power switch OFF.
- (b) Remove the service plug grip (see page 21–116).

NOTICE:

Turning the power switch ON (READY) with the service plug grip removed could cause malfunction. Therefore, never turn the power switch ON (READY) in this state.

- (c) Remove the inverter cover (see page 21–23).
- (d) Disconnect the three–phase alternating current cables for the motor and generator from the inverter.
- (e) Using a megohmmeter, check the insulation resistance between the six terminals of the three-phase alternating current cables on transaxle side and the body ground. Standard:

Tester Connection	Specified Condition
U (I14–1) – Body ground	10 M Ω or higher
V (I14–2) – Body ground	10 M Ω or higher
W (I14–3) – Body ground	10 M Ω or higher
U (I15–1) – Body ground	10 M Ω or higher
V (I15–2) – Body ground	10 M Ω or higher
W (I15–3) – Body ground	10 M Ω or higher

NG REPLACE HYBRID VEHICLE TRANSAXLE ASSY (See page 22–11)

OK

REPLACE W/CONVERTER INVERTER ASSY (See page 21-23)

21 CHECK HIGH VOLTAGE DIRECT CURRENT AREA FOR INSULATION

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Turn the power switch OFF.
- (b) Remove the service plug grip (see page 21–116).

NOTICE:

Turning the power switch ON (READY) with the service plug grip removed could cause malfunction. Therefore, never turn the power switch ON (READY) in this state.

- (c) Disconnect the frame wire from the inverter.
- (d) Using a megohmmeter, check the insulation resistance between the high–voltage terminals of the frame wire and the body ground.

Standard: 10 M Ω or higher

NG > Go to step 22

OK

REPLACE W/CONVERTER INVERTER ASSY (See page 21–23)

22 CHECK FRAME WIRE FOR INSULATION

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- (b) Disconnect the frame wire from the system main relays.
- (c) Using a megohmmeter, check the insulation resistance between the high–voltage terminals of the frame wire and the body ground.

Standard: 10 M Ω or higher

NG > REPLACE FRAME WIRE (See page 21–107)

Y -AB7667

23 CHECK SYSTEM MAIN RELAYS FOR STICKING

CAUTION:

- (a) Check that the service plug grip has been detached.
- (b) Disconnect all the high–voltage terminals of the system main relays.
- (c) Check the resistance at the switch side of the system main relays.

Standard: Below 1 Ω

GO TO STEP 4 AFTER REPLACE STUCK SYSTEM MAIN RELAY

OK

24 CHECK SYSTEM MAIN RELAYS FOR INSULATION

A87664

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- (b) Check that all the high–voltage terminals of the system main relays have been disconnected.
- (c) Using a megohmmeter, check the insulation resistance between the high–voltage terminals of the system main relays and the body ground. Standard: 10 M Ω or higher

25 CHECK SYSTEM MAIN RESISTOR FOR INSULATION

CAUTION:

Wear insulated gloves before performing the following operation.

- (a) Check that the service plug grip has been detached.
- (b) Check that both terminals of the system main resistor have been disconnected.
- (c) Using a megohmmeter, check the insulation resistance between the high–voltage terminal of the system main resistor and the body ground.

Standard: 10 M Ω or higher

NG > REPLACE SYSTEM MAIN RESISTOR

OK

OK

26 INSPECT MAIN BATTERY CABLE

Shielded

CAUTION:

NG

Wear insulated gloves and goggles before performing the following operation.

- (a) Remove the HV battery assembly (see page 21–54).
- (b) Remove the battery cover (see page 21–54).
- (c) Check if the main battery cable cover is not damaged or internal electrical leads are not in contact with the battery case or body.

OK: Electrical leads are not in contact with the battery case or body

- (d) Remove the terminal (A in the illustration) on the battery module side of the main battery cable only.
- (e) Using a megohmmeter, check the insulation resistance between each terminal of the main battery cable and shield ground.

REPLACE MAIN BATTERY CABLE

Standard: 10 M Ω or higher

27 INSPECT MAIN BATTERY CABLE NO.2

CAUTION:

Wear insulated gloves and goggles before performing the following operation.

- (a) Following the previous step, check if the main battery cable No. 2 cover is not damaged or internal electrical leads are not in contact with the battery case or body.
 OK: Electrical leads are not in contact with the battery
 - case or body
- (b) Remove the terminal (A in illustration) on the battery module side of the main battery cable No. 2 only.
- (c) Using a megohmmeter, check the insulation resistance between each terminal of the main battery cable No. 2 and shield ground.

Standard: 10 M Ω or higher

NG > REPLACE MAIN BATTERY CABLE NO.2

OK

28 INSPECT BATTERY PLUG

CAUTION:

A93738

Wear insulated gloves and goggles before performing the following operation.

(a) Following the previous step, disconnect only the connecting terminal of the battery plug.

NOTICE:

Do not reinstall the service plug grip.

(b) Using a megohmmeter, check the insulation resistance between each terminal of the battery plug wire harness and body ground.

Standard: 10 M Ω or higher

NG > REPLACE BATTERY PLUG

29 INSPECT FRAME WIRE NO.2

CAUTION:

Wear insulated gloves and goggles before performing the following operation.

(a) Following the previous step, check if the frame wire No.
 2 cover is not damaged or internal electrical leads are not in contact with the battery case or body.

OK: Electrical leads are not in contact with the battery case or body.

- (b) Remove all the terminals on the battery module side of the frame wire No. 2.
- (c) Using a megohmmeter, check the insulation resistance between each terminal of the frame wire No. 2 connector and the battery case.

Standard: 10 M Ω or higher

NG

REPLACE FRAME WIRE NO.2

OK

30 INSPECT JUNCTION BLOCK ASSY

CAUTION:

Wear insulated gloves and goggles before performing the following operation.

- (a) Following the previous step, remove the junction block assembly.
- (b) Visually check the junction block assembly for any damage.

OK: No crack or damage

NG REPLACE JUNCTION BLOCK ASSY

Y A90472

31 INSPECT HV BATTERY ASSY

Wear insulated gloves and goggles before performing the following operation.

(a) Following the previous step, check the insulation resistance between each terminal (either the positive and negative side) of each battery module of the HV battery assembly and the battery case using a megohmmeter. Standard: Some of the battery modules have continuity of below 10 M Ω

A90470

OK

REPLACE HV SUPPLY BATTERY ASSY (See page 21-54)