DTC	P2238	OXYGEN SENSOR PUMPING CURRENT CIRCUIT LOW (FOR A/F SENSOR)(BANK 1 SENSOR 1)
-----	-------	---

DTC	P2239	OXYGEN SENSOR PUMPING CURRENT CIRCUIT HIGH (FOR A/F SENSOR)(BANK 1 SENSOR 1)
		JENSOR I

DTC	P2252	OXYGEN SENSOR REFERENCE GROUND CIRCUIT LOW (FOR A/F SENSOR)(BANK 1 SENSOR 1)
		SENSOR I)

DTC	P2253	OXYGEN SENSOR REFERENCE GROUND CIRCUIT HIGH (FOR A/F SENSOR)(BANK 1 SENSOR 1)
-----	-------	---

HINT:

Although the each DTC title says "oxygen sensor", these DTCs are related to the A/F sensor.

CIRCUIT DESCRIPTION

Refer to DTC P2195 on page 05-314.

DTC No.	DTC Detection Condition	Trouble Area	
P2238	 Conditions (a) or (b) continues for 5 seconds or more : (a) AF+ is 0.5 V or less (b) (AF+) - (AF-) is 0.8 V or more A/F sensor admittance: Less than 0.022 1/Ω 	Open or short in A/F sensor circuit A/F sensor A/F sensor heater EFI M relay A/F sensor heater and relay circuit ECM	
P2239	 Condition (a) continues for 5.0 seconds or more : (a) AF+ is more than 4.5 V (b) (AF+) - (AF-) is more than 0.8 V 	 Open or short in A/F sensor circuit A/F sensor A/F sensor heater EFI M relay A/F sensor heater and relay circuit ECM 	
P2252	AF– is 0.5 V or less for 5.0 seconds or more	 Open or short in A/F sensor circuit A/F sensor A/F sensor heater EFI M relay A/F sensor heater and relay circuit ECM 	
P2253	AF– is more than 4.5 V for 5.0 seconds or more	 Open or short in A/F sensor circuit A/F sensor A/F sensor heater EFI M relay A/F sensor heater and relay circuit ECM 	

MONITOR DESCRIPTION

The air fuel ratio (A/F) sensor has a characteristic that it varies its voltage output in proportion to the air–fuel ratio. If impedance (alternating current resistance) or voltage output of the sensor extraordinarily deviates from the standard range, the ECM determines to detect an open or short malfunction in the A/F sensor circuit.

2004 Prius - Preliminary Release (RM1075U)

MONITOR STRATEGY

Related DTCs	P2238: A/F sensor pumping current circuit low P2239: A/F sensor pumping current circuit high P2252: A/F sensor reference ground circuit low P2253: A/F sensor reference ground circuit high	
Required sensors/components	Main: A/F sensor Related: Engine speed sensor, vehicle speed sensor, engine coolant temperature sensor	
Frequency of operation	Continuous	
Duration	5 seconds	
MIL operation Immediately		
Sequence of operation None		

TYPICAL ENABLING CONDITIONS

"General precondition" is defined as follows:

Battery voltage	10.5 V or more
Power switch	ON
Time after power switch from OFF to ON	5 seconds or more

"A/F sensor admittance precondition" is defined as follows:

Engine coolant temperature	30°C (86 °F) or more
Engine	Running
Time after first engine start	20 seconds or more
Time after A/F sensor heating	20 seconds or more

Case 1

P2238: A/F sensor pumping current circuit low

(AF+, AF- open)

The monitor will run whenever the following DTCs are not present	See page 05–20
Time while A/F sensor admittance precondition is met	20 seconds or more

Case 2

P2238: A/F sensor pumping current circuit low

(AF+, AF- short)

General precondition Met

Met

Case 3

P2238: A/F sensor pumping current circuit low

(AF+, GND short)

General precondition

Case 4

P2239: A/F sensor pumping current circuit high

General precondition	Met	
Case 5		
P2252: A/F sensor reference ground circuit I	ow	
General precondition	Met	
Case 6		
P2253: A/F sensor reference ground circuit high		
General precondition	Met	

General precondition

TYPICAL MALFUNCTION THRESHOLDS

Case 1

P2238: A/F sensor pumping current circuit low

(AF+, AF- open)

A/F sensor admittance	Less than 0.022 $1/\Omega$
Case 2	
P2238: A/F sensor pumping current circuit lo	W
(AF+, AF– short)	
AF+ terminal voltage	Less than 0.1 V
Case 3	
P2238: A/F sensor pumping current circuit lo	W
(AF+, GND short)	
Difference between voltage of terminals AF+ and AF-	Less than 0.5 V
Case 4	
P2239: A/F sensor pumping current circuit h	ligh
AF+ terminal voltage (AF+ and +B, or AF+ and VCC short)	More than 4.5 V
Case 5	
P2252: A/F sensor reference ground circuit	low
AF- terminal voltage (AF- and GND short)	0.5 V or less
Case 6	
P2253: A/F sensor reference ground circuit	high
AF- terminal voltage (AF- and +B, or AF- and VCC short)	More than 4.5 V

WIRING DIAGRAM

Refer to DTC P2195 on page 05–314.

INSPECTION PROCEDURE

HINT:

Malfunctioning areas can be found by performing the ACTIVE TEST / A/F CONTROL operation. The A/F CONTROL operation can determine if the A/F sensor, heated oxygen sensor or other potential trouble area are malfunctioning or not.

(a) Perform the ACTIVE TEST A/F CONTROL operation.

HINT:

The A/F CONTROL operation lowers the injection volume 12.5% or increases the injection volume 25%.

- (1) Connect the hand-held tester to the DLC3 on the vehicle.
- (2) Turn the power switch ON (IG).
- (3) Put the engine in inspection mode (see page 05-1).
- (4) Warm up the engine by running the engine at 2,500 rpm with the accelerator pedal depressed more than 60 % for approximately 90 seconds.
- (5) Select the item: DIAGNOSIS / ENHANCED OBD II / ENGINE AND ECT / ACTIVE TEST / A/F CONTROL.
- (6) Perform the A/F CONTROL operation with the engine in an idle condition (press the right or left button).

Result:

A/F sensor reacts in accordance with increase and decrease of injection volume:

+25 % \rightarrow rich output: Less than 3.0 V

–12.5 % \rightarrow lean output: More than 3.35 V

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume:

+25 % \rightarrow rich output: More than 0.55 V

–12.5 % \rightarrow lean output: Less than 0.4 V

NOTICE:

The A/F sensor output has a few seconds of delay and the heated oxygen sensor output has about 20 seconds of delay at maximum.

	Output voltage of A/F sensor (sensor 1)	Output voltage of heated oxygen sensor (sensor 2)	Main Suspect Trouble Area
Case 1	Injection volume +25 % -12.5 % Output voltage More than 3.35 V Less than 3.0 V	Injection volume +25 % -12.5 % Output voltage More than 0.55 V Less than 0.4V	
Case 2	Injection volume +25 % -12.5 % Output voltage Almost no reaction	Injection volume +25 % -12.5 % Output voltage More than 0.55 V Less than 0.4V	A/F sensor (A/F sensor, sensor heater, sensor circuit)
Case 3	Injection volume +25 % -12.5 % Output voltage More than 3.35 V Less than 3.0V	Injection volume +25 % -12.5 % Output voltage Almost no reaction	Heated oxygen sensor (heated oxygen sensor, sensor heater, sensor circuit)
Case 4	Injection volume +25 % -12.5 % Output voltage Almost no reaction	Injection volume +25 % -12.5 % Output voltage Almost no reaction	Extremely RICH or LEAN ac- tual air-fuel ratio (Injector, fuel pressure, gas leakage in exhaust system, etc.)

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of both A/F sensor and heated oxygen sensor.

To display the graph, enter ACTIVE TEST/ A/F CONTROL/USER DATA, select "AFS B1S1 and O2S B1S2" by pressing the "YES" button followed by the "ENTER" button and then the "F4" button.

- Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.
- A high A/F sensor voltage could be caused by a RICH air–fuel mixture. Check the conditions that would cause the engine to run with the RICH air–fuel mixture.
- A low A/F sensor voltage could be caused by a LEAN air–fuel mixture. Check the conditions that would cause the engine to run with the LEAN air–fuel mixture.

2004 Prius – Preliminary Release (RM1075U)

1 INSPECT AIR FUEL RATIO SENSOR(RESISTANCE OF A/F SENSOR HEATER)

OK

2

INSPECT INTEGRATION RELAY(EFI M RELAY)

ОК

3 CHECK HARNESS AND CONNECTOR(A/F SENSOR – ECM)

Wire Harness Side:

- (a) Disconnect the A5 A/F sensor connector.
- (b) Disconnect the E5 ECM connector.
- (c) Check the resistance between the wire harness side connectors.

Standard (Check for open):

Tester Connection	Specified Condition
AF+ (A5–3) – A1A+ (E5–23)	Below 1 Ω
AF- (A5-4) - A1A- (E5-22)	Below 1 Ω
HT (A5–1) – HA1A (E5–7)	Below 1 Ω

Standard (Check for short):

E5	
HA1A A1A-	
A1A+	
Y ECM Connector	A81695

Tester Connection	Specified Condition
AF+ (A5–3) or A1A+ (E5–23) – Body ground	10 k Ω or higher
AF– (A5–4) or A1A– (E5–22) – Body ground	10 k Ω or higher
HT (A5–1) or HA1A (E5–7) – Body ground	10 k Ω or higher

(d) Reconnect the A/F sensor connector.

(e) Reconnect the ECM connector.

ΟΚ

REPLACE ECM (See page 10–24)