DTC	P0560	System Voltage
-----	-------	----------------

DESCRIPTION

The battery supplies electricity to the ECM even when the ignition switch is in the OFF position. This power allows the ECM to store data such as DTC history, freeze frame data and fuel trim values. If the battery voltage falls below a minimum level, the memory is cleared and the ECM determines that there is a malfunction in the power supply circuit. When the engine is next started, the ECM illuminates the MIL and sets the DTC.

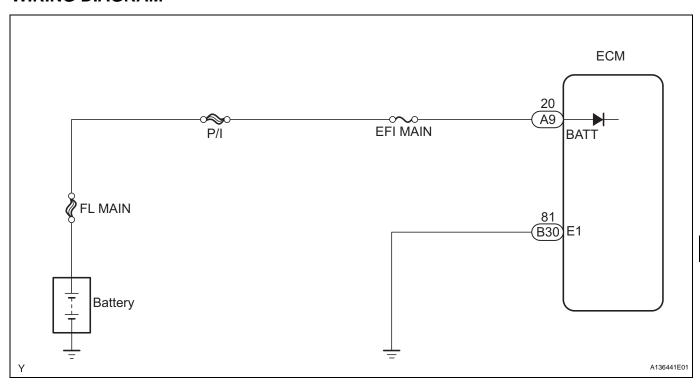
DTC No.	DTC Detection Condition	Trouble Area
P0560	Open in ECM back up power source circuit (1 trip detection logic)	 Open in back up power source circuit Battery Battery terminals EFI MAIN fuse ECM

HINT:

If DTC P0560 is set, the ECM does not store other DTCs or the data stored in the ECM are partly erased.

MONITOR STRATEGY

Related DTCs	P0560: ECM system voltage
Required Sensors/Components (Main)	ECM
Required Sensors/Components (Related)	-
Frequency of Operation	Continuous
Duration	3 seconds
MIL Operation	Immediate (MIL illuminated after next engine start)
Sequence of Operation	None

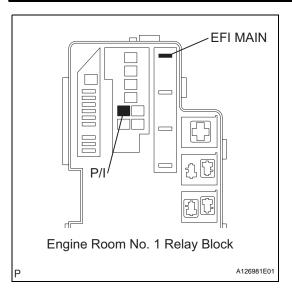

TYPICAL ENABLING CONDITIONS

Monitor runs whenever following DTCs not present	None

TYPICAL MALFUNCTION THRESHOLDS

ECM power source	Less than 3.5 V

WIRING DIAGRAM



INSPECTION PROCEDURE

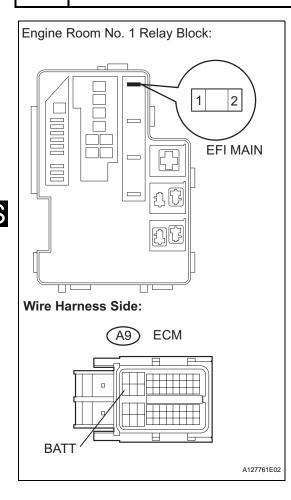
HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1 CHECK FUSE (EFI MAIN AND P/I)

- (a) Remove the EFI MAIN fuse and P/I fuse from the engine room No. 1 relay block.
- (b) Measure the resistance of the EFI MAIN fuse and P/I fuse.

Standard resistance:


Below 1 Ω

(c) Reinstall the EFI MAIN fuse and P/I fuse.

NG >

CHECK FOR SHORTS IN ALL HARNESSES AND CONNECTORS CONNECTED TO FUSE AND REPLACE FUSE

2 CHECK WIRE HARNESS (ECM - EFI MAIN FUSE, EFI MAIN FUSE - BATTERY)

- (a) Check the harness and the connector between the EFI MAIN fuse and ECM.
 - (1) Remove the EFI MAIN fuse from the engine No. 1 room relay block.
 - (2) Disconnect the A9 ECM connector.
 - (3) Measure the resistance.

Standard resistance

Tester Connection	Specified Condition
EFI MAIN fuse terminal 2 - A9-20 (BATT)	Below 1 Ω
EFI MAIN fuse terminal 2 or A9-20 (BATT) - Body ground	10 k Ω or higher

- (4) Reconnect the ECM connector.
- (5) Reinstall the EFI MAIN fuse.
- (b) Check the harness and the connector between the EFI MAIN fuse and battery.
 - (1) Remove the EFI MAIN fuse from the engine room No. 1 relay block.
 - (2) Disconnect the positive battery terminal.
 - (3) Measure the resistance.

Standard resistance

Tester Connection	Specified Condition
Battery positive terminal - EFI MAIN fuse terminal 1	Below 1 Ω
Battery positive terminal or EFI MAIN fuse terminal 1- Body ground	10 k Ω or higher

- (4) Reconnect the positive battery terminal.
- (5) Reinstall the EFI MAIN fuse.

NG

REPAIR OR REPLACE HARNESS AND CONNECTOR

OK_

3 INSPECT BATTERY

(a) Check that the battery is not depleted.

OK:

Battery is not depleted

NG

REPLACE BATTERY

OK

4 CHECK BATTERY TERMINAL

(a) Check that the battery terminals are not loose or corroded.

OK:

Battery terminals are not loose or corroded

NG REPAIR OR REPLACE BATTERY TERMINAL

ОК

- 5 CHECK WHETHER DTC OUTPUT RECURS
 - (a) Connect the intelligent tester to the DLC3.
 - (b) Turn the ignition switch ON and turn the tester ON.
 - (c) Clear DTCs (see page ES-39).
 - (d) Turn the ignition switch OFF and turn the tester OFF.
 - (e) Start the engine and turn the tester ON.
 - (f) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
 - (g) Read DTCs.

Result

Display (DTC Output)	Proceed to
P0560	A
No output	В

B CHECK FOR INTERMITTENT PROBLEMS

REPLACE ECM

ES