
| DTC | P0010 | Camshaft Position "A" Actuator Circuit (Bank 1) |
|-----|-------|-------------------------------------------------|
| DTC | P0020 | Camshaft Position "A" Actuator Circuit (Bank 2) |

### **DESCRIPTION**

- This DTC is designed to detect opens or shorts in the camshaft oil control valve (OCV) circuit. If the
  OCV's duty-cycle is excessively high or low while the engine is running, the ECM will illuminate the MIL
  and set the DTC.
- The VVT (variable valve timing) system adjusts the intake valve timing to improve the driveability. The
  engine oil pressure turns the camshaft actuator to adjust the valve timing. The OCV is a solenoid valve
  and switches the engine oil line. The valve moves when the ECM applies the 12 volts to the solenoid.
  The ECM changes the energizing time to the solenoid (duty-cycle) in accordance with the camshaft
  position, crankshaft position, throttle position, etc.



| DTC No. | DTC Detection Condition                                                            | Trouble Area                                                                                                                         |
|---------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| P0010   | Open or short in OCV for intake camshaft (bank 1) circuit (1 trip detection logic) | <ul> <li>Open or short in OCV for intake camshaft (bank 1) circuit</li> <li>OCV for intake camshaft (bank 1)</li> <li>ECM</li> </ul> |

| DTC No. | DTC Detection Condition                                                            | Trouble Area                                                                                           |
|---------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| P0020   | Open or short in OCV for intake camshaft (bank 2) circuit (1 trip detection logic) | Open or short in OCV for intake camshaft (bank 2) circuit     OCV for intake camshaft (bank 2)     ECM |

#### HINT:

This DTC relates to the Oil Control Valve (OCV).

#### MONITOR DESCRIPTION

This DTC is designed to detect opens or shorts in the camshaft oil control valve (OCV) circuit. If the OCV's duty-cycle is excessively high or low while the engine is running, the ECM will illuminate the MIL and set the DTC.

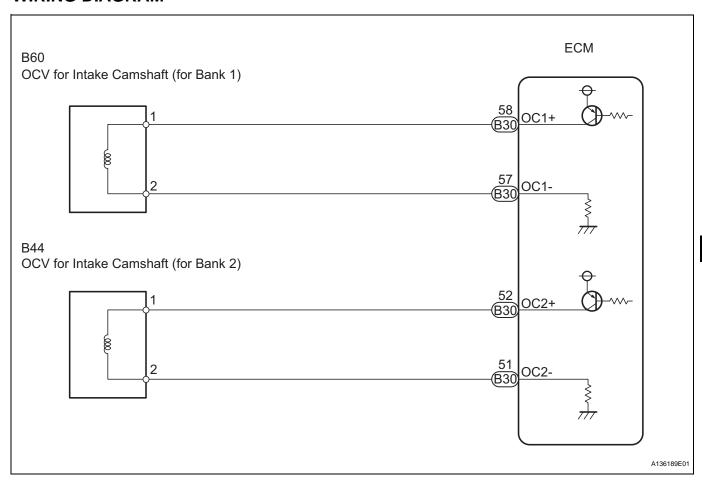
#### **MONITOR STRATEGY**



| Related DTCs                          | P0010: VVT OCV range check (bank 1)<br>P0020: VVT OCV range check (bank 2) |
|---------------------------------------|----------------------------------------------------------------------------|
| Required Sensors/Components (Main)    | VVT OCV                                                                    |
| Required Sensors/Components (Related) | -                                                                          |
| Frequency of Operation                | Continuous                                                                 |
| Duration                              | 1 second                                                                   |
| MIL Operation                         | Immediate                                                                  |
| Sequence of Operation                 | None                                                                       |

### **TYPICAL ENABLING CONDITIONS**

| Monitor runs whenever following DTCs not present | None                |
|--------------------------------------------------|---------------------|
| All of following conditions met                  | -                   |
| Starter                                          | OFF                 |
| Ignition switch                                  | ON                  |
| Time after ignition switch OFF to ON             | 0.5 seconds or more |


# **TYPICAL MALFUNCTION THRESHOLDS**

| One of following conditions met     | -             |
|-------------------------------------|---------------|
| A. All of following conditions met  | -             |
| Battery voltage                     | 11 to 13 V    |
| Target duty ratio                   | Less than 70% |
| Output signal duty ratio            | 100%          |
| B. All of following conditions met  | -             |
| Battery voltage                     | 13 V or more  |
| Target duty ratio                   | Less than 80% |
| Output signal duty ratio            | 100%          |
| C. Both of following conditions met | -             |
| Current cut status                  | Not cut       |
| Output signal duty ratio            | 3% or less    |

### **COMPONENT OPERATING RANGE**

| VVT OCV duty ratio | 3 to 100% |
|--------------------|-----------|
|--------------------|-----------|

#### **WIRING DIAGRAM**



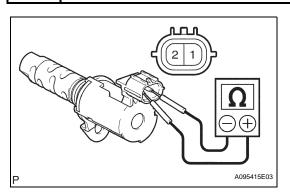
#### **INSPECTION PROCEDURE**

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

# 1 CHECK DTC

- (a) Clear DTC after recording the freeze frame data and DTC
- (b) Turn the ignition switch OFF.
- (c) Allow the engine to idle and check DTC.
- (d) Check that P0010 or P0020 is present.


OK:

P0010 or P0020 is present.



NG

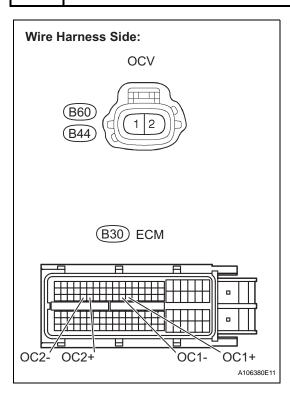
# 2 INSPECT CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY



- (a) Disconnect the B44 or B60 OCV connector.
- (b) Measure the resistance between the terminals of the OCV.

#### Standard resistance:

- 6.9 to 7.9  $\Omega$  at 20°C (68°F)
- (c) Reconnect the OCV connector.




REPLACE CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY





# 3 CHECK WIRE HARNESS (OCV - ECM)



- (a) Disconnect the B44 or B60 OCV connector.
- (b) Disconnect the B30 ECM connector.
- (c) Measure the resistance of the wire harness side connectors.

#### Standard resistance

| Tester Connection                       | Specified Condition     |
|-----------------------------------------|-------------------------|
| B60-1 - B30-58 (OC1+)                   | Below 1 $\Omega$        |
| B44-1 - B30-52 (OC2+)                   | Below 1 $\Omega$        |
| B60-2 - B30-57 (OC1-)                   | Below 1 $\Omega$        |
| B44-2 - B30-51 (OC2-)                   | Below 1 $\Omega$        |
| B60-1 or B30-58 (OC1+) - Body<br>ground | 10 k $\Omega$ or higher |
| B44-1 or B30-52 (OC2+) - Body<br>ground | 10 k $\Omega$ or higher |
| B60-2 or B30-57 (OC1-) - Body<br>ground | 10 k $\Omega$ or higher |
| B44-2 or B30-51 (OC2-) - Body<br>ground | 10 k $\Omega$ or higher |

- (d) Reconnect the OCV connector.
- (e) Reconnect the ECM connector.

NG

REPAIR OR REPLACE HARNESS AND CONNECTOR



#### **REPLACE ECM**